1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
- import os
- import torch
- import torch.nn as nn
- import torch.nn.init as init
- def prefetch_dataset(dataset, num_workers=4, batch_size=32, device=None, half=False):
- if isinstance(dataset, list) and isinstance(dataset[0], torch.Tensor):
- tensors = dataset
- else:
- dataloader = torch.utils.data.DataLoader(
- dataset,
- batch_size=batch_size,
- shuffle=False, drop_last=False,
- num_workers=num_workers, pin_memory=False
- )
- tensors = [t for t in dataloader]
- tensors = [torch.cat(t, dim=0) for t in zip(*tensors)]
- if device is not None:
- tensors = [t.to(device=device) for t in tensors]
- if half:
- tensors = [t.half() if t.is_floating_point() else t for t in tensors]
- return torch.utils.data.TensorDataset(*tensors)
- class PrefetchDataLoader:
- def __init__(self, dataloader, device, half=False):
- self.loader = dataloader
- self.iter = None
- self.device = device
- self.dtype = torch.float16 if half else torch.float32
- self.stream = torch.cuda.Stream()
- self.next_data = None
- def __len__(self):
- return len(self.loader)
- def async_prefech(self):
- try:
- self.next_data = next(self.iter)
- except StopIteration:
- self.next_data = None
- return
- with torch.cuda.stream(self.stream):
- if isinstance(self.next_data, torch.Tensor):
- self.next_data = self.next_data.to(dtype=self.dtype, device=self.device, non_blocking=True)
- elif isinstance(self.next_data, (list, tuple)):
- self.next_data = [
- t.to(dtype=self.dtype, device=self.device, non_blocking=True) if t.is_floating_point() else t.to(
- device=self.device, non_blocking=True) for t in self.next_data
- ]
- def __iter__(self):
- self.iter = iter(self.loader)
- self.async_prefech()
- while self.next_data is not None:
- torch.cuda.current_stream().wait_stream(self.stream)
- data = self.next_data
- self.async_prefech()
- yield data
- def init_params(net):
- """Init layer parameters."""
- for m in net.modules():
- if isinstance(m, nn.Conv2d):
- init.kaiming_normal(m.weight, mode='fan_out')
- # if m.bias:
- # init.constant(m.bias, -5)
- elif isinstance(m, nn.BatchNorm2d):
- init.constant(m.weight, 1)
- init.constant(m.bias, 0)
- elif isinstance(m, nn.Linear):
- init.normal(m.weight, std=1e-3)
- if m.bias:
- init.constant(m.bias, 0)
- def format_time(seconds):
- days = int(seconds / 3600 / 24)
- seconds = seconds - days * 3600 * 24
- hours = int(seconds / 3600)
- seconds = seconds - hours * 3600
- minutes = int(seconds / 60)
- seconds = seconds - minutes * 60
- secondsf = int(seconds)
- seconds = seconds - secondsf
- millis = int(seconds * 1000)
- f = ''
- i = 1
- if days > 0:
- f += str(days) + 'D'
- i += 1
- if hours > 0 and i <= 2:
- f += str(hours) + 'h'
- i += 1
- if minutes > 0 and i <= 2:
- f += str(minutes) + 'm'
- i += 1
- if secondsf > 0 and i <= 2:
- f += str(secondsf) + 's'
- i += 1
- if millis > 0 and i <= 2:
- f += str(millis) + 'ms'
- i += 1
- if f == '':
- f = '0ms'
- return f
- def is_better(new_metric, current_best_metric, metric_to_watch='acc'):
- """
- Determines which of the two metrics is better, the higher if watching acc or lower when watching loss
- :param new_metric: the new metric
- :param current_best_metric: the compared to metric
- :param metric_to_watch: acc or loss
- :return: bool, True if new metric is better than current
- """
- return metric_to_watch == 'acc' and new_metric > current_best_metric or (metric_to_watch == 'loss' and current_best_metric > new_metric)
- def makedirs_if_not_exists(dir_path: str):
- """
- make new directory in dir_path if it doesn't exists
- :param dir_path - full path of directory
- """
- if not os.path.exists(dir_path):
- os.makedirs(dir_path)
|