1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
- import math
- import torch
- from torch.utils.data import Sampler
- import torch.distributed as dist
- # TODO: Add unit test for RepeatAugSampler once DDP unit tests are supported.
- class RepeatAugSampler(Sampler):
- """
- Sampler that restricts data loading to a subset of the dataset for distributed,
- with repeated augmentation.
- It ensures that different each augmented version of a sample will be visible to a
- different process (GPU). Heavily based on torch.utils.data.DistributedSampler
- This sampler was taken from https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py
- Copyright (c) 2015-present, Facebook, Inc.
- Below code is modified from:
- https://github.com/rwightman/pytorch-image-models/blame/master/timm/data/distributed_sampler.py
- Note this sampler is currently supported only for DDP training.
- Arguments:
- dataset (torch.utils.data.Dataset): dataset to sample from.
- num_replicas (int): Number of dataset replicas, equals to world_size when set to 0 (default=0).
- shuffle (bool): whether to shuffle the dataset indices (default=True).
- num_repeats (int): amount of repetitions for each example.
- selected_round (int): When > 0, the number of samples to select per epoch for each rank is determined by
- int(math.floor(len(self.dataset) // selected_round * selected_round / selected_ratio))
- (default=256)
- selected_ratio (int): ratio to reduce selected samples by, num_replicas if 0.
- """
- def __init__(
- self,
- dataset: torch.utils.data.Dataset,
- num_replicas: int = None,
- rank: int = None,
- shuffle: bool = True,
- num_repeats: int = 3,
- selected_round: int = 256,
- selected_ratio: int = 0,
- ):
- if num_replicas is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- num_replicas = dist.get_world_size()
- if rank is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- rank = dist.get_rank()
- self.dataset = dataset
- self.num_replicas = num_replicas
- self.rank = rank
- self.shuffle = shuffle
- self.num_repeats = num_repeats
- self.epoch = 0
- self.num_samples = int(math.ceil(len(self.dataset) * num_repeats / self.num_replicas))
- self.total_size = self.num_samples * self.num_replicas
- # Determine the number of samples to select per epoch for each rank.
- # num_selected logic defaults to be the same as original RASampler impl, but this one can be tweaked
- # via selected_ratio and selected_round args.
- selected_ratio = selected_ratio or num_replicas # ratio to reduce selected samples by, num_replicas if 0
- if selected_round:
- self.num_selected_samples = int(math.floor(
- len(self.dataset) // selected_round * selected_round / selected_ratio))
- else:
- self.num_selected_samples = int(math.ceil(len(self.dataset) / selected_ratio))
- def __iter__(self):
- # deterministically shuffle based on epoch
- g = torch.Generator()
- g.manual_seed(self.epoch)
- if self.shuffle:
- indices = torch.randperm(len(self.dataset), generator=g)
- else:
- indices = torch.arange(start=0, end=len(self.dataset))
- # produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
- if isinstance(self.num_repeats, float) and not self.num_repeats.is_integer():
- # resample for repeats w/ non-integer ratio
- repeat_size = math.ceil(self.num_repeats * len(self.dataset))
- indices = indices[torch.tensor([int(i // self.num_repeats) for i in range(repeat_size)])]
- else:
- indices = torch.repeat_interleave(indices, repeats=int(self.num_repeats), dim=0)
- indices = indices.tolist() # leaving as tensor thrashes dataloader memory
- # add extra samples to make it evenly divisible
- padding_size = self.total_size - len(indices)
- if padding_size > 0:
- indices += indices[:padding_size]
- assert len(indices) == self.total_size
- # subsample per rank
- indices = indices[self.rank:self.total_size:self.num_replicas]
- assert len(indices) == self.num_samples
- # return up to num selected samples
- return iter(indices[:self.num_selected_samples])
- def __len__(self):
- return self.num_selected_samples
- def set_epoch(self, epoch):
- self.epoch = epoch
|