1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
- """ Mixup and Cutmix
- Papers:
- mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412)
- CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899)
- Code Reference:
- CutMix: https://github.com/clovaai/CutMix-PyTorch
- CutMix by timm: https://github.com/rwightman/pytorch-image-models/timm
- """
- from typing import List, Union
- import numpy as np
- import torch
- from super_gradients.training.exceptions.dataset_exceptions import IllegalDatasetParameterException
- def one_hot(x, num_classes, on_value=1., off_value=0., device='cuda'):
- x = x.long().view(-1, 1)
- return torch.full((x.size()[0], num_classes), off_value, device=device).scatter_(1, x, on_value)
- def mixup_target(target: torch.Tensor, num_classes: int, lam: float = 1., smoothing: float = 0.0, device: str = 'cuda'):
- """
- generate a smooth target (label) two-hot tensor to support the mixed images with different labels
- :param target: the targets tensor
- :param num_classes: number of classes (to set the final tensor size)
- :param lam: percentage of label a range [0, 1] in the mixing
- :param smoothing: the smoothing multiplier
- :param device: usable device ['cuda', 'cpu']
- :return:
- """
- off_value = smoothing / num_classes
- on_value = 1. - smoothing + off_value
- y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device)
- y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device)
- return y1 * lam + y2 * (1. - lam)
- def rand_bbox(img_shape: tuple, lam: float, margin: float = 0., count: int = None):
- """ Standard CutMix bounding-box
- Generates a random square bbox based on lambda value. This impl includes
- support for enforcing a border margin as percent of bbox dimensions.
- :param img_shape: Image shape as tuple
- :param lam: Cutmix lambda value
- :param margin: Percentage of bbox dimension to enforce as margin (reduce amount of box outside image)
- :param count: Number of bbox to generate
- """
- ratio = np.sqrt(1 - lam)
- img_h, img_w = img_shape[-2:]
- cut_h, cut_w = int(img_h * ratio), int(img_w * ratio)
- margin_y, margin_x = int(margin * cut_h), int(margin * cut_w)
- cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count)
- cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count)
- yl = np.clip(cy - cut_h // 2, 0, img_h)
- yh = np.clip(cy + cut_h // 2, 0, img_h)
- xl = np.clip(cx - cut_w // 2, 0, img_w)
- xh = np.clip(cx + cut_w // 2, 0, img_w)
- return yl, yh, xl, xh
- def rand_bbox_minmax(img_shape: tuple, minmax: Union[tuple, list], count: int = None):
- """ Min-Max CutMix bounding-box
- Inspired by Darknet cutmix impl, generates a random rectangular bbox
- based on min/max percent values applied to each dimension of the input image.
- Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max.
- :param img_shape: Image shape as tuple
- :param minmax: Min and max bbox ratios (as percent of image size)
- :param count: Number of bbox to generate
- """
- assert len(minmax) == 2
- img_h, img_w = img_shape[-2:]
- cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count)
- cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count)
- yl = np.random.randint(0, img_h - cut_h, size=count)
- xl = np.random.randint(0, img_w - cut_w, size=count)
- yu = yl + cut_h
- xu = xl + cut_w
- return yl, yu, xl, xu
- def cutmix_bbox_and_lam(img_shape: tuple, lam: float, ratio_minmax: Union[tuple, list] = None, correct_lam: bool = True,
- count: int = None):
- """
- Generate bbox and apply lambda correction.
- """
- if ratio_minmax is not None:
- yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count)
- else:
- yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count)
- if correct_lam or ratio_minmax is not None:
- bbox_area = (yu - yl) * (xu - xl)
- lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1])
- return (yl, yu, xl, xu), lam
- class CollateMixup:
- """
- Collate with Mixup/Cutmix that applies different params to each element or whole batch
- A Mixup impl that's performed while collating the batches.
- """
- def __init__(self, mixup_alpha: float = 1., cutmix_alpha: float = 0., cutmix_minmax: List[float] = None,
- prob: float = 1.0, switch_prob: float = 0.5,
- mode: str = 'batch', correct_lam: bool = True, label_smoothing: float = 0.1, num_classes: int = 1000):
- """
- Mixup/Cutmix that applies different params to each element or whole batch
- :param mixup_alpha: mixup alpha value, mixup is active if > 0.
- :param cutmix_alpha: cutmix alpha value, cutmix is active if > 0.
- :param cutmix_minmax: cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.
- :param prob: probability of applying mixup or cutmix per batch or element
- :param switch_prob: probability of switching to cutmix instead of mixup when both are active
- :param mode: how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element)
- :param correct_lam: apply lambda correction when cutmix bbox clipped by image borders
- :param label_smoothing: apply label smoothing to the mixed target tensor
- :param num_classes: number of classes for target
- """
- self.mixup_alpha = mixup_alpha
- self.cutmix_alpha = cutmix_alpha
- self.cutmix_minmax = cutmix_minmax
- if self.cutmix_minmax is not None:
- assert len(self.cutmix_minmax) == 2
- # force cutmix alpha == 1.0 when minmax active to keep logic simple & safe
- self.cutmix_alpha = 1.0
- self.mix_prob = prob
- self.switch_prob = switch_prob
- self.label_smoothing = label_smoothing
- self.num_classes = num_classes
- self.mode = mode
- self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix
- self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop)
- def _params_per_elem(self, batch_size):
- """
- generate two random masks to define which elements of the batch will be mixed and how (depending on the
- self.mixup_enabled, self.mixup_alpha, self.cutmix_alpha parameters
- :param batch_size:
- :return: two tensors with shape=batch_size - the first contains the lambda value per batch element
- and the second is a binary flag indicating use of cutmix per batch element
- """
- lam = torch.ones(batch_size, dtype=torch.float32)
- use_cutmix = torch.zeros(batch_size, dtype=torch.bool)
- if self.mixup_enabled:
- if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
- use_cutmix = torch.rand(batch_size) < self.switch_prob
- lam_mix = torch.where(
- use_cutmix,
- torch.distributions.beta.Beta(self.cutmix_alpha, self.cutmix_alpha).sample(sample_shape=batch_size),
- torch.distributions.beta.Beta(self.mixup_alpha, self.mixup_alpha).sample(sample_shape=batch_size))
- elif self.mixup_alpha > 0.:
- lam_mix = torch.distributions.beta.Beta(self.mixup_alpha, self.mixup_alpha).sample(sample_shape=batch_size)
- elif self.cutmix_alpha > 0.:
- use_cutmix = torch.ones(batch_size, dtype=torch.bool)
- lam_mix = torch.distributions.beta.Beta(self.cutmix_alpha, self.cutmix_alpha).sample(sample_shape=batch_size)
- else:
- raise IllegalDatasetParameterException("One of mixup_alpha > 0., cutmix_alpha > 0., "
- "cutmix_minmax not None should be true.")
- lam = torch.where(torch.rand(batch_size) < self.mix_prob, lam_mix.type(torch.float32), lam)
- return lam, use_cutmix
- def _params_per_batch(self):
- """
- generate two random parameters to define if batch will be mixed and how (depending on the
- self.mixup_enabled, self.mixup_alpha, self.cutmix_alpha parameters
- :return: two parameters - the first contains the lambda value for the whole batch
- and the second is a binary flag indicating use of cutmix for the batch
- """
- lam = 1.
- use_cutmix = False
- if self.mixup_enabled and torch.rand(1) < self.mix_prob:
- if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
- use_cutmix = torch.rand(1) < self.switch_prob
- lam_mix = torch.distributions.beta.Beta(self.cutmix_alpha, self.cutmix_alpha).sample() if use_cutmix else \
- torch.distributions.beta.Beta(self.mixup_alpha, self.mixup_alpha).sample()
- elif self.mixup_alpha > 0.:
- lam_mix = torch.distributions.beta.Beta(self.mixup_alpha, self.mixup_alpha).sample()
- elif self.cutmix_alpha > 0.:
- use_cutmix = True
- lam_mix = torch.distributions.beta.Beta(self.cutmix_alpha, self.cutmix_alpha).sample()
- else:
- raise IllegalDatasetParameterException("One of mixup_alpha > 0., cutmix_alpha > 0., "
- "cutmix_minmax not None should be true.")
- lam = float(lam_mix)
- return lam, use_cutmix
- def _mix_elem_collate(self, output: torch.Tensor, batch: list, half: bool = False):
- """
- This is the implementation for 'elem' or 'half' modes
- :param output: the output tensor to fill
- :param batch: list of thr batch items
- :return: a tensor containing the lambda values used for the mixing (this vector can be used for
- mixing the labels as well)
- """
- batch_size = len(batch)
- num_elem = batch_size // 2 if half else batch_size
- assert len(output) == num_elem
- lam_batch, use_cutmix = self._params_per_elem(num_elem)
- for i in range(num_elem):
- j = batch_size - i - 1
- lam = lam_batch[i]
- mixed = batch[i][0]
- if lam != 1.:
- if use_cutmix[i]:
- if not half:
- mixed = torch.clone(mixed)
- (yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
- output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
- mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh]
- lam_batch[i] = lam
- else:
- mixed = mixed * lam + batch[j][0] * (1 - lam)
- output[i] += mixed
- if half:
- lam_batch = torch.cat((lam_batch, torch.ones(num_elem)))
- return torch.tensor(lam_batch).unsqueeze(1)
- def _mix_pair_collate(self, output: torch.Tensor, batch: list):
- """
- This is the implementation for 'pair' mode
- :param output: the output tensor to fill
- :param batch: list of thr batch items
- :return: a tensor containing the lambda values used for the mixing (this vector can be used for
- mixing the labels as well)
- """
- batch_size = len(batch)
- lam_batch, use_cutmix = self._params_per_elem(batch_size // 2)
- for i in range(batch_size // 2):
- j = batch_size - i - 1
- lam = lam_batch[i]
- mixed_i = batch[i][0]
- mixed_j = batch[j][0]
- assert 0 <= lam <= 1.0
- if lam < 1.:
- if use_cutmix[i]:
- (yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
- output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
- patch_i = torch.clone(mixed_i[:, yl:yh, xl:xh])
- mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh]
- mixed_j[:, yl:yh, xl:xh] = patch_i
- lam_batch[i] = lam
- else:
- mixed_temp = mixed_i.type(torch.float32) * lam + mixed_j.type(torch.float32) * (1 - lam)
- mixed_j = mixed_j.type(torch.float32) * lam + mixed_i.type(torch.float32) * (1 - lam)
- mixed_i = mixed_temp
- torch.rint(mixed_j, out=mixed_j)
- torch.rint(mixed_i, out=mixed_i)
- output[i] += mixed_i
- output[j] += mixed_j
- lam_batch = torch.cat((lam_batch, lam_batch[::-1]))
- return torch.tensor(lam_batch).unsqueeze(1)
- def _mix_batch_collate(self, output: torch.Tensor, batch: list):
- """
- This is the implementation for 'batch' mode
- :param output: the output tensor to fill
- :param batch: list of thr batch items
- :return: the lambda value used for the mixing
- """
- batch_size = len(batch)
- lam, use_cutmix = self._params_per_batch()
- if use_cutmix:
- (yl, yh, xl, xh), lam = cutmix_bbox_and_lam(
- output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam)
- for i in range(batch_size):
- j = batch_size - i - 1
- mixed = batch[i][0]
- if lam != 1.:
- if use_cutmix:
- mixed = torch.clone(mixed) # don't want to modify the original while iterating
- mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh]
- else:
- mixed = mixed * lam + batch[j][0] * (1 - lam)
- output[i] += mixed
- return lam
- def __call__(self, batch, _=None):
- batch_size = len(batch)
- if batch_size % 2 != 0:
- raise IllegalDatasetParameterException('Batch size should be even when using this')
- half = 'half' in self.mode
- if half:
- batch_size //= 2
- output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.float32)
- if self.mode == 'elem' or self.mode == 'half':
- lam = self._mix_elem_collate(output, batch, half=half)
- elif self.mode == 'pair':
- lam = self._mix_pair_collate(output, batch)
- else:
- lam = self._mix_batch_collate(output, batch)
- target = torch.tensor([b[1] for b in batch], dtype=torch.int32)
- target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu')
- target = target[:batch_size]
- return output, target
|