1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
- import unittest
- from super_gradients.training import Trainer, models
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.utils.utils import check_models_have_same_weights
- import os
- class LocalCkptHeadReplacementTest(unittest.TestCase):
- def test_local_ckpt_head_replacement(self):
- train_params = {
- "max_epochs": 1,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- }
- # Define Model
- net = models.get("resnet18", num_classes=5)
- trainer = Trainer("test_resume_training")
- trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
- ckpt_path = os.path.join(trainer.checkpoints_dir_path, "ckpt_latest.pth")
- net2 = models.get("resnet18", num_classes=10, checkpoint_num_classes=5, checkpoint_path=ckpt_path)
- self.assertFalse(check_models_have_same_weights(net, net2))
- net.linear = None
- net2.linear = None
- self.assertTrue(check_models_have_same_weights(net, net2))
|