1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
- import unittest
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients import Trainer
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training import models
- class TestViT(unittest.TestCase):
- def setUp(self):
- self.arch_params = {"image_size": (224, 224), "patch_size": (16, 16), "num_classes": 10}
- self.train_params = {
- "max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- }
- def test_train_vit(self):
- """
- Validate vit_base
- """
- trainer = Trainer("test_vit_base")
- model = models.get("vit_base", arch_params=self.arch_params, num_classes=5)
- trainer.train(
- model=model, training_params=self.train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader()
- )
- if __name__ == "__main__":
- unittest.main()
|