Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#561 Feature/sg 193 extend output formator

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-193-extend_detection_target_transform
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
  1. import unittest
  2. from super_gradients.training import models
  3. from super_gradients.training import Trainer
  4. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  5. from super_gradients.training.kd_trainer import KDTrainer
  6. import torch
  7. from super_gradients.training.utils.utils import check_models_have_same_weights
  8. from super_gradients.training.metrics import Accuracy
  9. from super_gradients.training.losses.kd_losses import KDLogitsLoss
  10. class KDEMATest(unittest.TestCase):
  11. @classmethod
  12. def setUp(cls):
  13. cls.sg_trained_teacher = Trainer("sg_trained_teacher")
  14. cls.kd_train_params = {
  15. "max_epochs": 3,
  16. "lr_updates": [1],
  17. "lr_decay_factor": 0.1,
  18. "lr_mode": "step",
  19. "lr_warmup_epochs": 0,
  20. "initial_lr": 0.1,
  21. "loss": KDLogitsLoss(torch.nn.CrossEntropyLoss()),
  22. "optimizer": "SGD",
  23. "criterion_params": {},
  24. "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  25. "train_metrics_list": [Accuracy()],
  26. "valid_metrics_list": [Accuracy()],
  27. "metric_to_watch": "Accuracy",
  28. "loss_logging_items_names": ["Loss", "Task Loss", "Distillation Loss"],
  29. "greater_metric_to_watch_is_better": True,
  30. "average_best_models": False,
  31. "ema": True,
  32. }
  33. def test_teacher_ema_not_duplicated(self):
  34. """Check that the teacher EMA is a reference to the teacher net (not a copy)."""
  35. kd_model = KDTrainer("test_teacher_ema_not_duplicated")
  36. student = models.get("resnet18", arch_params={"num_classes": 1000})
  37. teacher = models.get("resnet50", arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
  38. kd_model.train(
  39. training_params=self.kd_train_params,
  40. student=student,
  41. teacher=teacher,
  42. train_loader=classification_test_dataloader(),
  43. valid_loader=classification_test_dataloader(),
  44. )
  45. self.assertTrue(kd_model.ema_model.ema.module.teacher is kd_model.net.module.teacher)
  46. self.assertTrue(kd_model.ema_model.ema.module.student is not kd_model.net.module.student)
  47. def test_kd_ckpt_reload_net(self):
  48. """Check that the KD trainer load correctly from checkpoint when "load_ema_as_net=False"."""
  49. # Create a KD trainer and train it
  50. train_params = self.kd_train_params.copy()
  51. kd_model = KDTrainer("test_kd_ema_ckpt_reload")
  52. student = models.get("resnet18", arch_params={"num_classes": 1000})
  53. teacher = models.get("resnet50", arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
  54. kd_model.train(
  55. training_params=self.kd_train_params,
  56. student=student,
  57. teacher=teacher,
  58. train_loader=classification_test_dataloader(),
  59. valid_loader=classification_test_dataloader(),
  60. )
  61. ema_model = kd_model.ema_model.ema
  62. net = kd_model.net
  63. # Load the trained KD trainer
  64. kd_model = KDTrainer("test_kd_ema_ckpt_reload")
  65. student = models.get("resnet18", arch_params={"num_classes": 1000})
  66. teacher = models.get("resnet50", arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
  67. train_params["resume"] = True
  68. kd_model.train(
  69. training_params=train_params,
  70. student=student,
  71. teacher=teacher,
  72. train_loader=classification_test_dataloader(),
  73. valid_loader=classification_test_dataloader(),
  74. )
  75. reloaded_ema_model = kd_model.ema_model.ema
  76. reloaded_net = kd_model.net
  77. # trained ema == loaded ema (Should always be true as long as "ema=True" in train_params)
  78. self.assertTrue(check_models_have_same_weights(ema_model, reloaded_ema_model))
  79. # loaded net == trained net (since load_ema_as_net = False)
  80. self.assertTrue(check_models_have_same_weights(reloaded_net, net))
  81. # loaded net != trained ema (since load_ema_as_net = False)
  82. self.assertTrue(not check_models_have_same_weights(reloaded_net, ema_model))
  83. # loaded student ema == loaded student net (since load_ema_as_net = False)
  84. self.assertTrue(not check_models_have_same_weights(reloaded_ema_model.module.student, reloaded_net.module.student))
  85. # loaded teacher ema == loaded teacher net (teacher always loads ema)
  86. self.assertTrue(check_models_have_same_weights(reloaded_ema_model.module.teacher, reloaded_net.module.teacher))
  87. if __name__ == "__main__":
  88. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file