1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
- import unittest
- from super_gradients.training import models
- from super_gradients.training import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.kd_trainer import KDTrainer
- import torch
- from super_gradients.training.utils.utils import check_models_have_same_weights
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.losses.kd_losses import KDLogitsLoss
- class KDEMATest(unittest.TestCase):
- @classmethod
- def setUp(cls):
- cls.sg_trained_teacher = Trainer("sg_trained_teacher")
- cls.kd_train_params = {
- "max_epochs": 3,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": KDLogitsLoss(torch.nn.CrossEntropyLoss()),
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "loss_logging_items_names": ["Loss", "Task Loss", "Distillation Loss"],
- "greater_metric_to_watch_is_better": True,
- "average_best_models": False,
- "ema": True,
- }
- def test_teacher_ema_not_duplicated(self):
- """Check that the teacher EMA is a reference to the teacher net (not a copy)."""
- kd_model = KDTrainer("test_teacher_ema_not_duplicated")
- student = models.get("resnet18", arch_params={"num_classes": 1000})
- teacher = models.get("resnet50", arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
- kd_model.train(
- training_params=self.kd_train_params,
- student=student,
- teacher=teacher,
- train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader(),
- )
- self.assertTrue(kd_model.ema_model.ema.module.teacher is kd_model.net.module.teacher)
- self.assertTrue(kd_model.ema_model.ema.module.student is not kd_model.net.module.student)
- def test_kd_ckpt_reload_net(self):
- """Check that the KD trainer load correctly from checkpoint when "load_ema_as_net=False"."""
- # Create a KD trainer and train it
- train_params = self.kd_train_params.copy()
- kd_model = KDTrainer("test_kd_ema_ckpt_reload")
- student = models.get("resnet18", arch_params={"num_classes": 1000})
- teacher = models.get("resnet50", arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
- kd_model.train(
- training_params=self.kd_train_params,
- student=student,
- teacher=teacher,
- train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader(),
- )
- ema_model = kd_model.ema_model.ema
- net = kd_model.net
- # Load the trained KD trainer
- kd_model = KDTrainer("test_kd_ema_ckpt_reload")
- student = models.get("resnet18", arch_params={"num_classes": 1000})
- teacher = models.get("resnet50", arch_params={"num_classes": 1000}, pretrained_weights="imagenet")
- train_params["resume"] = True
- kd_model.train(
- training_params=train_params,
- student=student,
- teacher=teacher,
- train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader(),
- )
- reloaded_ema_model = kd_model.ema_model.ema
- reloaded_net = kd_model.net
- # trained ema == loaded ema (Should always be true as long as "ema=True" in train_params)
- self.assertTrue(check_models_have_same_weights(ema_model, reloaded_ema_model))
- # loaded net == trained net (since load_ema_as_net = False)
- self.assertTrue(check_models_have_same_weights(reloaded_net, net))
- # loaded net != trained ema (since load_ema_as_net = False)
- self.assertTrue(not check_models_have_same_weights(reloaded_net, ema_model))
- # loaded student ema == loaded student net (since load_ema_as_net = False)
- self.assertTrue(not check_models_have_same_weights(reloaded_ema_model.module.student, reloaded_net.module.student))
- # loaded teacher ema == loaded teacher net (teacher always loads ema)
- self.assertTrue(check_models_have_same_weights(reloaded_ema_model.module.teacher, reloaded_net.module.teacher))
- if __name__ == "__main__":
- unittest.main()
|