Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#561 Feature/sg 193 extend output formator

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-193-extend_detection_target_transform
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.losses.dice_ce_edge_loss &mdash; SuperGradients 3.0.3 documentation</title>
  7. <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  9. <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
  10. <link rel="stylesheet" href="../../../../_static/custom.css" type="text/css" />
  11. <!--[if lt IE 9]>
  12. <script src="../../../../_static/js/html5shiv.min.js"></script>
  13. <![endif]-->
  14. <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
  15. <script src="../../../../_static/jquery.js"></script>
  16. <script src="../../../../_static/underscore.js"></script>
  17. <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
  18. <script src="../../../../_static/doctools.js"></script>
  19. <script src="../../../../_static/sphinx_highlight.js"></script>
  20. <script src="../../../../_static/js/theme.js"></script>
  21. <link rel="index" title="Index" href="../../../../genindex.html" />
  22. <link rel="search" title="Search" href="../../../../search.html" />
  23. </head>
  24. <body class="wy-body-for-nav">
  25. <div class="wy-grid-for-nav">
  26. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  27. <div class="wy-side-scroll">
  28. <div class="wy-side-nav-search" >
  29. <a href="../../../../index.html" class="icon icon-home"> SuperGradients
  30. </a>
  31. <div role="search">
  32. <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
  33. <input type="text" name="q" placeholder="Search docs" />
  34. <input type="hidden" name="check_keywords" value="yes" />
  35. <input type="hidden" name="area" value="default" />
  36. </form>
  37. </div>
  38. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  39. <p class="caption" role="heading"><span class="caption-text">Welcome To SuperGradients</span></p>
  40. <ul>
  41. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">Version 3 is out! Notebooks have been updated!</a></li>
  42. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#build-with-supergradients">Build with SuperGradients</a></li>
  43. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#quick-installation">Quick Installation</a></li>
  44. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#what-s-new">What’s New</a></li>
  45. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#coming-soon">Coming soon</a></li>
  46. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#table-of-content">Table of Content</a></li>
  47. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#getting-started">Getting Started</a></li>
  48. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#advanced-features">Advanced Features</a></li>
  49. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#installation-methods">Installation Methods</a></li>
  50. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#implemented-model-architectures">Implemented Model Architectures</a></li>
  51. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#documentation">Documentation</a></li>
  52. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#contributing">Contributing</a></li>
  53. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#citation">Citation</a></li>
  54. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#community">Community</a></li>
  55. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#license">License</a></li>
  56. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#deci-platform">Deci Platform</a></li>
  57. </ul>
  58. <p class="caption" role="heading"><span class="caption-text">Technical Documentation</span></p>
  59. <ul>
  60. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
  61. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
  62. </ul>
  63. </div>
  64. </div>
  65. </nav>
  66. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  67. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  68. <a href="../../../../index.html">SuperGradients</a>
  69. </nav>
  70. <div class="wy-nav-content">
  71. <div class="rst-content">
  72. <div role="navigation" aria-label="Page navigation">
  73. <ul class="wy-breadcrumbs">
  74. <li><a href="../../../../index.html" class="icon icon-home"></a> &raquo;</li>
  75. <li><a href="../../../index.html">Module code</a> &raquo;</li>
  76. <li>super_gradients.training.losses.dice_ce_edge_loss</li>
  77. <li class="wy-breadcrumbs-aside">
  78. </li>
  79. </ul>
  80. <hr/>
  81. </div>
  82. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  83. <div itemprop="articleBody">
  84. <h1>Source code for super_gradients.training.losses.dice_ce_edge_loss</h1><div class="highlight"><pre>
  85. <span></span><span class="kn">import</span> <span class="nn">torch</span>
  86. <span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
  87. <span class="kn">from</span> <span class="nn">super_gradients.training.losses.dice_loss</span> <span class="kn">import</span> <span class="n">DiceLoss</span><span class="p">,</span> <span class="n">BinaryDiceLoss</span>
  88. <span class="kn">from</span> <span class="nn">super_gradients.training.utils.segmentation_utils</span> <span class="kn">import</span> <span class="n">target_to_binary_edge</span>
  89. <span class="kn">from</span> <span class="nn">torch.nn.modules.loss</span> <span class="kn">import</span> <span class="n">_Loss</span>
  90. <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Tuple</span>
  91. <span class="kn">from</span> <span class="nn">super_gradients.training.losses.mask_loss</span> <span class="kn">import</span> <span class="n">MaskAttentionLoss</span>
  92. <div class="viewcode-block" id="DiceCEEdgeLoss"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.losses.DiceCEEdgeLoss">[docs]</a><span class="k">class</span> <span class="nc">DiceCEEdgeLoss</span><span class="p">(</span><span class="n">_Loss</span><span class="p">):</span>
  93. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
  94. <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
  95. <span class="n">num_aux_heads</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2</span><span class="p">,</span>
  96. <span class="n">num_detail_heads</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
  97. <span class="n">weights</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
  98. <span class="n">dice_ce_weights</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
  99. <span class="n">ignore_index</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="o">-</span><span class="mi">100</span><span class="p">,</span>
  100. <span class="n">edge_kernel</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span>
  101. <span class="n">ce_edge_weights</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">list</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="mf">.5</span><span class="p">,</span> <span class="mf">.5</span><span class="p">)):</span>
  102. <span class="sd">&quot;&quot;&quot;</span>
  103. <span class="sd"> Total loss is computed as follows:</span>
  104. <span class="sd"> Loss-cls-edge = λ1 * CE + λ2 * M * CE , where [λ1, λ2] are ce_edge_weights.</span>
  105. <span class="sd"> For each Main feature maps and auxiliary heads the loss is calculated as:</span>
  106. <span class="sd"> Loss-main-aux = λ3 * Loss-cls-edge + λ4 * Loss-Dice, where [λ3, λ4] are dice_ce_weights.</span>
  107. <span class="sd"> For Feature maps defined as detail maps that predicts only the edge mask, the loss is computed as follow:</span>
  108. <span class="sd"> Loss-detail = BinaryCE + BinaryDice</span>
  109. <span class="sd"> Finally the total loss is computed as follows for the whole feature maps:</span>
  110. <span class="sd"> Loss = Σw[i] * Loss-main-aux[i] + Σw[j] * Loss-detail[j], where `w` is defined as the `weights` argument</span>
  111. <span class="sd"> `i` in [0, 1 + num_aux_heads], 1 is for the main feature map.</span>
  112. <span class="sd"> `j` in [1 + num_aux_heads, 1 + num_aux_heads + num_detail_heads].</span>
  113. <span class="sd"> :param num_aux_heads: num of auxiliary heads.</span>
  114. <span class="sd"> :param num_detail_heads: num of detail heads.</span>
  115. <span class="sd"> :param weights: Loss lambda weights.</span>
  116. <span class="sd"> :param dice_ce_weights: weights lambdas between (Dice, CE) losses.</span>
  117. <span class="sd"> :param edge_kernel: kernel size of dilation erosion convolutions for creating the edge feature map.</span>
  118. <span class="sd"> :param ce_edge_weights: weights lambdas between regular CE and edge attention CE.</span>
  119. <span class="sd"> &quot;&quot;&quot;</span>
  120. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
  121. <span class="c1"># Check that arguments are valid.</span>
  122. <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span> <span class="o">==</span> <span class="n">num_aux_heads</span> <span class="o">+</span> <span class="n">num_detail_heads</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>\
  123. <span class="s2">&quot;Lambda loss weights must be in same size as loss items.&quot;</span>
  124. <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">dice_ce_weights</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;dice_ce_weights must an iterable with size 2, found: </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">dice_ce_weights</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
  125. <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">ce_edge_weights</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">,</span> <span class="sa">f</span><span class="s2">&quot;dice_ce_weights must an iterable with size 2, found: </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">ce_edge_weights</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
  126. <span class="bp">self</span><span class="o">.</span><span class="n">edge_kernel</span> <span class="o">=</span> <span class="n">edge_kernel</span>
  127. <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span> <span class="o">=</span> <span class="n">num_classes</span>
  128. <span class="bp">self</span><span class="o">.</span><span class="n">ignore_index</span> <span class="o">=</span> <span class="n">ignore_index</span>
  129. <span class="bp">self</span><span class="o">.</span><span class="n">weights</span> <span class="o">=</span> <span class="n">weights</span>
  130. <span class="bp">self</span><span class="o">.</span><span class="n">dice_ce_weights</span> <span class="o">=</span> <span class="n">dice_ce_weights</span>
  131. <span class="bp">self</span><span class="o">.</span><span class="n">use_detail</span> <span class="o">=</span> <span class="n">num_detail_heads</span> <span class="o">&gt;</span> <span class="mi">0</span>
  132. <span class="bp">self</span><span class="o">.</span><span class="n">num_aux_heads</span> <span class="o">=</span> <span class="n">num_aux_heads</span>
  133. <span class="bp">self</span><span class="o">.</span><span class="n">num_detail_heads</span> <span class="o">=</span> <span class="n">num_detail_heads</span>
  134. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_detail</span><span class="p">:</span>
  135. <span class="bp">self</span><span class="o">.</span><span class="n">bce</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">()</span>
  136. <span class="bp">self</span><span class="o">.</span><span class="n">binary_dice</span> <span class="o">=</span> <span class="n">BinaryDiceLoss</span><span class="p">(</span><span class="n">apply_sigmoid</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  137. <span class="bp">self</span><span class="o">.</span><span class="n">ce_edge</span> <span class="o">=</span> <span class="n">MaskAttentionLoss</span><span class="p">(</span>
  138. <span class="n">criterion</span><span class="o">=</span><span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">(</span><span class="n">reduction</span><span class="o">=</span><span class="s2">&quot;none&quot;</span><span class="p">,</span> <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">),</span>
  139. <span class="n">loss_weights</span><span class="o">=</span><span class="n">ce_edge_weights</span>
  140. <span class="p">)</span>
  141. <span class="bp">self</span><span class="o">.</span><span class="n">dice_loss</span> <span class="o">=</span> <span class="n">DiceLoss</span><span class="p">(</span><span class="n">apply_softmax</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">)</span>
  142. <span class="nd">@property</span>
  143. <span class="k">def</span> <span class="nf">component_names</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  144. <span class="sd">&quot;&quot;&quot;</span>
  145. <span class="sd"> Component names for logging during training.</span>
  146. <span class="sd"> These correspond to 2nd item in the tuple returned in self.forward(...).</span>
  147. <span class="sd"> See super_gradients.Trainer.train() docs for more info.</span>
  148. <span class="sd"> &quot;&quot;&quot;</span>
  149. <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;main_loss&quot;</span><span class="p">]</span>
  150. <span class="c1"># Append aux losses names</span>
  151. <span class="n">names</span> <span class="o">+=</span> <span class="p">[</span><span class="sa">f</span><span class="s2">&quot;aux_loss</span><span class="si">{</span><span class="n">i</span><span class="si">}</span><span class="s2">&quot;</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_aux_heads</span><span class="p">)]</span>
  152. <span class="c1"># Append detail losses names</span>
  153. <span class="n">names</span> <span class="o">+=</span> <span class="p">[</span><span class="sa">f</span><span class="s2">&quot;detail_loss</span><span class="si">{</span><span class="n">i</span><span class="si">}</span><span class="s2">&quot;</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_detail_heads</span><span class="p">)]</span>
  154. <span class="n">names</span> <span class="o">+=</span> <span class="p">[</span><span class="s2">&quot;loss&quot;</span><span class="p">]</span>
  155. <span class="k">return</span> <span class="n">names</span>
  156. <div class="viewcode-block" id="DiceCEEdgeLoss.forward"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.losses.DiceCEEdgeLoss.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
  157. <span class="sd">&quot;&quot;&quot;</span>
  158. <span class="sd"> :param preds: Model output predictions, must be in the followed format:</span>
  159. <span class="sd"> [Main-feats, Aux-feats[0], ..., Aux-feats[num_auxs-1], Detail-feats[0], ..., Detail-feats[num_details-1]</span>
  160. <span class="sd"> &quot;&quot;&quot;</span>
  161. <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_aux_heads</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_detail_heads</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>\
  162. <span class="sa">f</span><span class="s2">&quot;Wrong num of predictions tensors, expected </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">num_aux_heads</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_detail_heads</span> <span class="o">+</span> <span class="mi">1</span><span class="si">}</span><span class="s2"> found </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
  163. <span class="n">edge_target</span> <span class="o">=</span> <span class="n">target_to_binary_edge</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">edge_kernel</span><span class="p">,</span>
  164. <span class="n">ignore_index</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">ignore_index</span><span class="p">,</span> <span class="n">flatten_channels</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  165. <span class="n">losses</span> <span class="o">=</span> <span class="p">[]</span>
  166. <span class="n">total_loss</span> <span class="o">=</span> <span class="mi">0</span>
  167. <span class="c1"># Main and auxiliaries feature maps losses</span>
  168. <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_aux_heads</span><span class="p">):</span>
  169. <span class="n">ce_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">ce_edge</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">target</span><span class="p">,</span> <span class="n">edge_target</span><span class="p">)</span>
  170. <span class="n">dice_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dice_loss</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">target</span><span class="p">)</span>
  171. <span class="n">loss</span> <span class="o">=</span> <span class="n">ce_loss</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dice_ce_weights</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">dice_loss</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dice_ce_weights</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
  172. <span class="n">total_loss</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">*</span> <span class="n">loss</span>
  173. <span class="n">losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span>
  174. <span class="c1"># Detail feature maps losses</span>
  175. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_detail</span><span class="p">:</span>
  176. <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_aux_heads</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">)):</span>
  177. <span class="n">bce_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bce</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">edge_target</span><span class="p">)</span>
  178. <span class="n">dice_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">binary_dice</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">edge_target</span><span class="p">)</span>
  179. <span class="n">loss</span> <span class="o">=</span> <span class="n">bce_loss</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dice_ce_weights</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">dice_loss</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dice_ce_weights</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
  180. <span class="n">total_loss</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">*</span> <span class="n">loss</span>
  181. <span class="n">losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span>
  182. <span class="n">losses</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">total_loss</span><span class="p">)</span>
  183. <span class="k">return</span> <span class="n">total_loss</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">losses</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span></div></div>
  184. </pre></div>
  185. </div>
  186. </div>
  187. <footer>
  188. <hr/>
  189. <div role="contentinfo">
  190. <p>&#169; Copyright 2021, SuperGradients team.</p>
  191. </div>
  192. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  193. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  194. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  195. </footer>
  196. </div>
  197. </div>
  198. </section>
  199. </div>
  200. <script>
  201. jQuery(function () {
  202. SphinxRtdTheme.Navigation.enable(true);
  203. });
  204. </script>
  205. </body>
  206. </html>
Discard
Tip!

Press p or to see the previous file or, n or to see the next file