Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:feature/infra-1481_call_integration_tests
# Example conversion parameters, to be used with super_gradients/examples/convert_recipe_example/convert_recipe_example.py # Suppose you trained cifar10_resnet using train_from_recipe beforehand, Then: # python convert_recipe_example.py --config-name=cifar10_conversion_params experiment_name=YOUR_EXPERIMENT_NAME. # Alternatively (or if ckpts are located anywhere else from the default checkpoints dir), you can give the full checkpoint path: # python convert_recipe_example.py --config-name=cifar10_conversion_params checkpoint_path=YOUR_CHECKPOINT_PATH defaults: - default_conversion_params - _self_ experiment_name: resnet18_cifar # The experiment name used to train the model (optional- ignored when checkpoint_path is given) # CONVERSION RELATED PARAMS out_path: # str, Destination path for the .onnx file. When None- out_path will be the resolved checkpoint path replacing .ckpt suffix with .onnx. input_shape: # input shape, not including batch_size. Always channels first (i.e (3, 224, 224)). - 3 - 32 - 32 pre_process: # Preprocessing pipeline, will be resolved by TransformsFactory(), and will be baked into the converted model (optional). Compose: transforms: - Standardize - Normalize: mean: - 0.4914 - 0.4822 - 0.4465 std: - 0.2023 - 0.1994 - 0.2010 post_process: # Postprocessing pipeline, will be resolved by TransformsFactory(), and will be baked into the converted model (optional). prep_model_for_conversion_kwargs: # For SgModules, args to be passed to model.prep_model_for_conversion prior to torch.onnx.export call. torch_onnx_export_kwargs: # kwargs (EXCLUDING: FIRST 3 KWARGS- MODEL, F, ARGS). to be unpacked in torch.onnx.export call opset_version: 16
Press p or to see the previous file or, n or to see the next file