Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#549 Feature/infra 1481 call integration tests

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/infra-1481_call_integration_tests
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
  1. # STDC segmentation training example with Cityscapes dataset.
  2. # Reproduction and refinement of paper: Rethinking BiSeNet For Real-time Semantic Segmentation.
  3. #
  4. # Instructions:
  5. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  6. # 1. Move to the project root (where you will find the ReadMe and src folder)
  7. # 2. Run the command:
  8. # STDC1-Seg75: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75
  9. # STDC2-Seg75: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75 architecture=stdc2_seg
  10. # Note: add "external_checkpoint_path=<stdc1-backbone-pretrained-path>" to use pretrained backbone
  11. #
  12. #
  13. #
  14. # Validation mIoU - Cityscapes, training time:
  15. # STDC1-Seg75: input-size: [768, 1536] mIoU: 76.87 4 X RTX A5000, 29 H, early stopped after 711 epochs
  16. # STDC2-Seg75: input-size: [768, 1536] mIoU: 78.93 2 X RTX A5000, 29 H, early stopped after 530 epochs
  17. #
  18. # Official git repo:
  19. # https://github.com/MichaelFan01/STDC-Seg
  20. # Paper:
  21. # https://arxiv.org/abs/2104.13188
  22. #
  23. # Pretrained checkpoints:
  24. # Backbones- downloaded from the author's official repo.
  25. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth
  26. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth
  27. #
  28. # Logs, tensorboards and network checkpoints:
  29. # https://deci-pretrained-models.s3.amazonaws.com/stdc1_seg75_cityscapes/
  30. # https://deci-pretrained-models.s3.amazonaws.com/stdc2_seg75_cityscapes/
  31. #
  32. #
  33. # Learning rate and batch size parameters, using 4 GeForce RTX 2080 Ti with DDP:
  34. # STDC1-Seg75: input-size: [768, 1536] initial_lr: 0.005 batch-size: 4 * 4gpus = 16
  35. # STDC2-Seg75: input-size: [768, 1536] initial_lr: 0.005 batch-size: 8 * 2gpus = 16
  36. #
  37. # Comments:
  38. # * Pretrained backbones were used.
  39. # * Results with Deci code are higher than original implementation, mostly thanks to changes in Detail loss and
  40. # module, different auxiliary feature maps and different loss weights.
  41. defaults:
  42. - training_hyperparams: cityscapes_default_train_params
  43. - dataset_params: cityscapes_stdc_seg75_dataset_params
  44. - checkpoint_params: default_checkpoint_params
  45. - _self_
  46. train_dataloader: cityscapes_train
  47. val_dataloader: cityscapes_val
  48. architecture: stdc1_seg
  49. arch_params:
  50. num_classes: 19
  51. use_aux_heads: True
  52. checkpoint_params:
  53. checkpoint_path:
  54. load_backbone: True
  55. load_weights_only: True
  56. strict_load: no_key_matching
  57. training_hyperparams:
  58. initial_lr: 0.005
  59. sync_bn: True
  60. loss:
  61. stdc_loss:
  62. num_classes: 19
  63. ignore_index: 19
  64. mining_percent: 0.0625 # mining percentage is 1/16 of pixels following original implementation.
  65. weights: [ 1., 0.6, 0.4, 1. ]
  66. multi_gpu: DDP
  67. num_gpus: 4
  68. experiment_name: ${architecture}75_cityscapes
  69. ckpt_root_dir:
  70. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  71. hydra:
  72. run:
  73. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  74. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file