Deci-AI:master
from
deci-ai:feature/infra-1481_call_integration_tests
We defined recipes to ensure that anyone can reproduce our results in the most simple way.
Setup
To run recipes you first need to clone the super-gradients repository:
git clone https://github.com/Deci-AI/super-gradients
You then need to move to the root of the clone project (where you find "requirements.txt" and "setup.py") and install super-gradients:
pip install -e .
Finally, append super-gradients to the python path: (Replace "YOUR-LOCAL-PATH" with the path to the downloaded repo)
export PYTHONPATH=$PYTHONPATH:<YOUR-LOCAL-PATH>/super-gradients/
How to run a recipe
The recipes are defined in .yaml format and we use the hydra library to allow you to easily customize the parameters. The basic basic syntax is as follow:
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=<CONFIG-NAME> dataset_params.data_dir=<PATH-TO-DATASET>
Note: this script needs to be launched from the root folder of super_gradients Note: if you stored your dataset in the path specified by the recipe you can drop "dataset_params.data_dir=".
Explore our recipes
You can find all of our recipes here. You will find information about the performance of a recipe as well as the command to execute it in the header of its config file.
Example: Training of YoloX Small on Coco 2017, using 8 GPU
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_s dataset_params.data_dir=/home/coco2017
List of commands
All the commands to launch the recipes described here are listed below. Please make to "dataset_params.data_dir=" if you did not store the dataset in the path specified by the recipe (as showed in the example above).
- Classification
resnet:
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cifar10_resnet +experiment_name=cifar10
efficientnet
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_efficientnet
mobilenetv2
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv2
mobilenetv3 small
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv3_small
mobilenetv3 large
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv3_large
regnetY200
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY200
regnetY400
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY400
regnetY600
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY600
regnetY800
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY800
repvgg
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_repvgg
resnet50
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_resnet50
resnet50_kd
python src/super_gradients/examples/train_from_kd_recipe_example/train_from_kd_recipe.py --config-name=imagenet_resnet50_kd
vit_base
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_vit_base
vit_large
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_vit_large
- Detection
ssd_lite_mobilenet_v2
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ssd_lite_mobilenet_v2
yolox_n
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_n
yolox_t
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_t
yolox_s
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_s
yolox_m
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_m
yolox_l
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_l
yolox_x
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_x
- Segmentation
DDRNet23
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet
DDRNet23-Slim
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet architecture=ddrnet_23_slim
RegSeg48
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_regseg48
STDC1-Seg50
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg50
STDC2-Seg50
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg50 architecture=stdc2_seg
STDC1-Seg75
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75
STDC2-Seg75
python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75 external_checkpoint_path=<stdc2-backbone-pretrained-path> architecture=stdc2_seg
Press p or to see the previous file or, n or to see the next file