Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#548 Split and rename the modules from super_gradients.common.environment

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:hotfix/SG-000-refactor_environment_package
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  1. # Efficientnet-B0 Imagenet training
  2. # This example trains with effective batch size = 64 * 4 gpus = 256.
  3. # Epoch time on 4 X 3090Ti distributed training is ~ 16:25 minutes
  4. # Logs and tensorboards: s3://deci-pretrained-models/efficientnet_b0/
  5. # Instructions:
  6. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  7. # 1. Move to the project root (where you will find the ReadMe and src folder)
  8. # 2. Run the command:
  9. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_efficientnet
  10. defaults:
  11. - training_hyperparams: imagenet_efficientnet_train_params
  12. - dataset_params: imagenet_efficientnet_dataset_params
  13. - arch_params: efficientnet_b0_arch_params
  14. - checkpoint_params: default_checkpoint_params
  15. - _self_
  16. arch_params:
  17. num_classes: 1000
  18. train_dataloader: imagenet_train
  19. val_dataloader: imagenet_val
  20. resume: False
  21. training_hyperparams:
  22. resume: ${resume}
  23. experiment_name: efficientnet_b0_imagenet
  24. ckpt_root_dir:
  25. multi_gpu: DDP
  26. num_gpus: 4
  27. architecture: efficientnet_b0
  28. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  29. hydra:
  30. run:
  31. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  32. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file