1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
- backbone_params:
- in_channels: 3
- strides_list: [2, 2, 2, 2, 2] # list of stride per stage.
- width_list: [32, 64, 128, 256, 512] # list of num channels per stage.
- num_blocks_list: [2, 3, 3, 2, 2] # list of num blocks per stage.
- block_types_list: [REPVGG, REPVGG, REPVGG, REPVGG, REPVGG] # list of block types per stage. See unet_encoder.DownBlockType for options.
- is_out_feature_list: [ True, True, True, True, True ] # list of flags whether stage features should be an output.
- block_params:
- anti_alias: True # RepVGG stage param
- droppath_prob: 0. # XBlock stage param
- bottleneck_ratio: 1. # XBlock stage param
- group_width: 16 # XBlock stage param
- se_ratio: # XBlock stage param
- steps: 4 # STDC stage params
- stdc_downsample_mode: dw_conv # STDC stage params
- context_module:
- ASPP:
- in_channels: ${last:${backbone_params.width_list}}
- dilation_list: [2, 4, 6]
- in_out_ratio: 1.
- # legacy parameter to support old trained checkpoints that were trained by mistake with extra redundant
- # biases before batchnorm operators. should be set to `False` for new training processes.
- use_bias: False
- decoder_params:
- # skip expansion ratio value, before fusing the skip features from the encoder with the decoder features, a projection
- # convolution is applied upon the encoder features to project the num_channels by skip_expansion.
- skip_expansion: 0.25
- decoder_scale: 0.25 # num_channels width ratio between encoder stages and decoder stages.
- up_block_types: [UP_CAT, UP_CAT, UP_CAT, UP_CAT] # See unet_decoder.UpBlockType for options.
- up_block_repeat_list: [ 1, 1, 1, 1] # num of blocks per decoder stage, the `block` implementation depends on the up-block type.
- mode: bilinear
- align_corners: False
- up_factor: 2
- is_skip_list: [True, True, True, True] # List of flags whether to use feature-map from encoder stage as skip connection or not.
- min_decoder_channels: 1 # The minimum num_channels of decoder stages. Useful i.e if we want to keep the width above the num of classes.
- dropout: 0.
- final_upsample_factor: 2 # Final upsample scale factor after the segmentation head.
- head_upsample_mode: bilinear
- align_corners: False
- head_hidden_channels: # num channels before the last classification layer. see `mid_channels` in `SegmentationHead` class.
- use_aux_heads: False
- aux_heads_params:
- use_aux_list: [False, False, True, True, True] # whether to append to auxiliary head per encoder stage.
- aux_heads_factor: [2, 4, 8, 16, 32] # Upsample factor per encoder stage.
- aux_hidden_channels: [32, 32, 64, 64, 64] # Hidden num channels before last classification layer, per encoder stage.
- aux_out_channels: [1, 1, 19, 19, 19] # Output channels, can be refers as num_classes, of auxiliary head per encoder stage.
- _convert_: all
|