Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#548 Split and rename the modules from super_gradients.common.environment

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:hotfix/SG-000-refactor_environment_package
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  1. backbone_params:
  2. in_channels: 3
  3. strides_list: [2, 2, 2, 2, 2] # list of stride per stage.
  4. width_list: [32, 64, 128, 256, 512] # list of num channels per stage.
  5. num_blocks_list: [2, 3, 3, 2, 2] # list of num blocks per stage.
  6. block_types_list: [REPVGG, REPVGG, REPVGG, REPVGG, REPVGG] # list of block types per stage. See unet_encoder.DownBlockType for options.
  7. is_out_feature_list: [ True, True, True, True, True ] # list of flags whether stage features should be an output.
  8. block_params:
  9. anti_alias: True # RepVGG stage param
  10. droppath_prob: 0. # XBlock stage param
  11. bottleneck_ratio: 1. # XBlock stage param
  12. group_width: 16 # XBlock stage param
  13. se_ratio: # XBlock stage param
  14. steps: 4 # STDC stage params
  15. stdc_downsample_mode: dw_conv # STDC stage params
  16. context_module:
  17. ASPP:
  18. in_channels: ${last:${backbone_params.width_list}}
  19. dilation_list: [2, 4, 6]
  20. in_out_ratio: 1.
  21. # legacy parameter to support old trained checkpoints that were trained by mistake with extra redundant
  22. # biases before batchnorm operators. should be set to `False` for new training processes.
  23. use_bias: False
  24. decoder_params:
  25. # skip expansion ratio value, before fusing the skip features from the encoder with the decoder features, a projection
  26. # convolution is applied upon the encoder features to project the num_channels by skip_expansion.
  27. skip_expansion: 0.25
  28. decoder_scale: 0.25 # num_channels width ratio between encoder stages and decoder stages.
  29. up_block_types: [UP_CAT, UP_CAT, UP_CAT, UP_CAT] # See unet_decoder.UpBlockType for options.
  30. up_block_repeat_list: [ 1, 1, 1, 1] # num of blocks per decoder stage, the `block` implementation depends on the up-block type.
  31. mode: bilinear
  32. align_corners: False
  33. up_factor: 2
  34. is_skip_list: [True, True, True, True] # List of flags whether to use feature-map from encoder stage as skip connection or not.
  35. min_decoder_channels: 1 # The minimum num_channels of decoder stages. Useful i.e if we want to keep the width above the num of classes.
  36. dropout: 0.
  37. final_upsample_factor: 2 # Final upsample scale factor after the segmentation head.
  38. head_upsample_mode: bilinear
  39. align_corners: False
  40. head_hidden_channels: # num channels before the last classification layer. see `mid_channels` in `SegmentationHead` class.
  41. use_aux_heads: False
  42. aux_heads_params:
  43. use_aux_list: [False, False, True, True, True] # whether to append to auxiliary head per encoder stage.
  44. aux_heads_factor: [2, 4, 8, 16, 32] # Upsample factor per encoder stage.
  45. aux_hidden_channels: [32, 32, 64, 64, 64] # Hidden num channels before last classification layer, per encoder stage.
  46. aux_out_channels: [1, 1, 19, 19, 19] # Output channels, can be refers as num_classes, of auxiliary head per encoder stage.
  47. _convert_: all
Discard
Tip!

Press p or to see the previous file or, n or to see the next file