1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.utils.ssd_utils — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -> Fill Survey</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#supergradients">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#professional-tools-integration">Professional Tools Integration</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.utils.ssd_utils</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.utils.ssd_utils</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">itertools</span>
- <span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">sqrt</span>
- <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.detection_utils</span> <span class="kn">import</span> <span class="n">non_max_suppression</span><span class="p">,</span> <span class="n">NMS_Type</span><span class="p">,</span> \
- <span class="n">matrix_non_max_suppression</span><span class="p">,</span> <span class="n">DetectionPostPredictionCallback</span>
- <div class="viewcode-block" id="DefaultBoxes"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.DefaultBoxes">[docs]</a><span class="k">class</span> <span class="nc">DefaultBoxes</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Default Boxes, (aka: anchor boxes or priors boxes) used by SSD model</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">fig_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">feat_size</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">scales</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">aspect_ratios</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span>
- <span class="n">scale_xy</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">scale_wh</span><span class="o">=</span><span class="mf">0.2</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> For each feature map i (each predicting level, grids) the anchors (a.k.a. default boxes) will be:</span>
- <span class="sd"> [</span>
- <span class="sd"> [s, s], [sqrt(s * s_next), sqrt(s * s_next)],</span>
- <span class="sd"> [s * sqrt(alpha1), s / sqrt(alpha1)], [s / sqrt(alpha1), s * sqrt(alpha1)],</span>
- <span class="sd"> ...</span>
- <span class="sd"> [s * sqrt(alphaN), s / sqrt(alphaN)], [s / sqrt(alphaN), s * sqrt(alphaN)]</span>
- <span class="sd"> ] / fig_size</span>
- <span class="sd"> where:</span>
- <span class="sd"> * s = scale[i] - this level's scale</span>
- <span class="sd"> * s_next = scale[i + 1] - next level's scale</span>
- <span class="sd"> * alpha1, ... alphaN - this level's alphas, e.g. [2, 3]</span>
- <span class="sd"> * fig_size - input image resolution</span>
- <span class="sd"> Because of division by image resolution, the anchors will be in image coordinates normalized to [0, 1]</span>
- <span class="sd"> :param fig_size: input image resolution</span>
- <span class="sd"> :param feat_size: resolution of all feature maps with predictions (grids)</span>
- <span class="sd"> :param scales: anchor sizes in pixels for each feature level;</span>
- <span class="sd"> one value per level will be used to generate anchors based on the formula above</span>
- <span class="sd"> :param aspect_ratios: lists of alpha values for each feature map</span>
- <span class="sd"> :param scale_xy: predicted boxes will be with a factor scale_xy</span>
- <span class="sd"> so will be multiplied by scale_xy during post-prediction processing;</span>
- <span class="sd"> e.g. scale 0.1 means that prediction will be 10 times bigger</span>
- <span class="sd"> (improves predictions quality)</span>
- <span class="sd"> :param scale_wh: same logic as in scale_xy, but for width and height.</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">feat_size</span> <span class="o">=</span> <span class="n">feat_size</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">fig_size</span> <span class="o">=</span> <span class="n">fig_size</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scale_xy_</span> <span class="o">=</span> <span class="n">scale_xy</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scale_wh_</span> <span class="o">=</span> <span class="n">scale_wh</span>
- <span class="c1"># According to https://github.com/weiliu89/caffe</span>
- <span class="c1"># Calculation method slightly different from paper</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">scales</span> <span class="o">=</span> <span class="n">scales</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">aspect_ratios</span> <span class="o">=</span> <span class="n">aspect_ratios</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">default_boxes</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">num_anchors</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="c1"># size of feature and number of feature</span>
- <span class="k">for</span> <span class="n">idx</span><span class="p">,</span> <span class="n">sfeat</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">feat_size</span><span class="p">):</span>
- <span class="n">sk1</span> <span class="o">=</span> <span class="n">scales</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span>
- <span class="n">sk2</span> <span class="o">=</span> <span class="n">scales</span><span class="p">[</span><span class="n">idx</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
- <span class="n">sk3</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">sk1</span> <span class="o">*</span> <span class="n">sk2</span><span class="p">)</span>
- <span class="n">all_sizes</span> <span class="o">=</span> <span class="p">[(</span><span class="n">sk1</span><span class="p">,</span> <span class="n">sk1</span><span class="p">),</span> <span class="p">(</span><span class="n">sk3</span><span class="p">,</span> <span class="n">sk3</span><span class="p">)]</span>
- <span class="k">for</span> <span class="n">alpha</span> <span class="ow">in</span> <span class="n">aspect_ratios</span><span class="p">[</span><span class="n">idx</span><span class="p">]:</span>
- <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="o">=</span> <span class="n">sk1</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">alpha</span><span class="p">),</span> <span class="n">sk1</span> <span class="o">/</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">alpha</span><span class="p">)</span>
- <span class="n">all_sizes</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">))</span>
- <span class="n">all_sizes</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">h</span><span class="p">,</span> <span class="n">w</span><span class="p">))</span>
- <span class="n">all_sizes</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">all_sizes</span><span class="p">)</span> <span class="o">/</span> <span class="n">fig_size</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">num_anchors</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">all_sizes</span><span class="p">))</span>
- <span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="ow">in</span> <span class="n">all_sizes</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="ow">in</span> <span class="n">itertools</span><span class="o">.</span><span class="n">product</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">sfeat</span><span class="p">),</span> <span class="n">repeat</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
- <span class="n">cx</span><span class="p">,</span> <span class="n">cy</span> <span class="o">=</span> <span class="p">(</span><span class="n">j</span> <span class="o">+</span> <span class="mf">0.5</span><span class="p">)</span> <span class="o">/</span> <span class="n">sfeat</span><span class="p">,</span> <span class="p">(</span><span class="n">i</span> <span class="o">+</span> <span class="mf">0.5</span><span class="p">)</span> <span class="o">/</span> <span class="n">sfeat</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">default_boxes</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">cx</span><span class="p">,</span> <span class="n">cy</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">))</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">default_boxes</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
- <span class="c1"># For IoU calculation</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">]</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">]</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span><span class="p">[:,</span> <span class="mi">3</span><span class="p">]</span>
- <span class="nd">@property</span>
- <span class="k">def</span> <span class="nf">scale_xy</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_xy_</span>
- <span class="nd">@property</span>
- <span class="k">def</span> <span class="nf">scale_wh</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_wh_</span>
- <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">order</span><span class="o">=</span><span class="s2">"xyxy"</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">order</span> <span class="o">==</span> <span class="s2">"xyxy"</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes_xyxy</span>
- <span class="k">if</span> <span class="n">order</span> <span class="o">==</span> <span class="s2">"xywh"</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">dboxes</span></div>
- <div class="viewcode-block" id="SSDPostPredictCallback"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.SSDPostPredictCallback">[docs]</a><span class="k">class</span> <span class="nc">SSDPostPredictCallback</span><span class="p">(</span><span class="n">DetectionPostPredictionCallback</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> post prediction callback module to convert and filter predictions coming from the SSD net to a format</span>
- <span class="sd"> used by all other detection models</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">conf</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.001</span><span class="p">,</span> <span class="n">iou</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.6</span><span class="p">,</span> <span class="n">classes</span><span class="p">:</span> <span class="nb">list</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
- <span class="n">max_predictions</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">300</span><span class="p">,</span>
- <span class="n">nms_type</span><span class="p">:</span> <span class="n">NMS_Type</span> <span class="o">=</span> <span class="n">NMS_Type</span><span class="o">.</span><span class="n">ITERATIVE</span><span class="p">,</span>
- <span class="n">multi_label_per_box</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Predictions of SSD contain unnormalized probabilities for a background class,</span>
- <span class="sd"> together with confidences for all the dataset classes. Background will be utilized and discarded,</span>
- <span class="sd"> so this callback will return 0-based classes without background</span>
- <span class="sd"> :param conf: confidence threshold</span>
- <span class="sd"> :param iou: IoU threshold</span>
- <span class="sd"> :param classes: (optional list) filter by class</span>
- <span class="sd"> :param nms_type: the type of nms to use (iterative or matrix)</span>
- <span class="sd"> :param multi_label_per_box: whether to use re-use each box with all possible labels</span>
- <span class="sd"> (instead of the maximum confidence all confidences above threshold</span>
- <span class="sd"> will be sent to NMS)</span>
- <span class="sd"> """</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">SSDPostPredictCallback</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">conf</span> <span class="o">=</span> <span class="n">conf</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">iou</span> <span class="o">=</span> <span class="n">iou</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">nms_type</span> <span class="o">=</span> <span class="n">nms_type</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">classes</span> <span class="o">=</span> <span class="n">classes</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">max_predictions</span> <span class="o">=</span> <span class="n">max_predictions</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">multi_label_per_box</span> <span class="o">=</span> <span class="n">multi_label_per_box</span>
- <div class="viewcode-block" id="SSDPostPredictCallback.forward"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.ssd_utils.SSDPostPredictCallback.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">predictions</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="n">nms_input</span> <span class="o">=</span> <span class="n">predictions</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">nms_type</span> <span class="o">==</span> <span class="n">NMS_Type</span><span class="o">.</span><span class="n">ITERATIVE</span><span class="p">:</span>
- <span class="n">nms_res</span> <span class="o">=</span> <span class="n">non_max_suppression</span><span class="p">(</span><span class="n">nms_input</span><span class="p">,</span> <span class="n">conf_thres</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="p">,</span> <span class="n">iou_thres</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">iou</span><span class="p">,</span>
- <span class="n">multi_label_per_box</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">multi_label_per_box</span><span class="p">,</span> <span class="n">with_confidence</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">nms_res</span> <span class="o">=</span> <span class="n">matrix_non_max_suppression</span><span class="p">(</span><span class="n">nms_input</span><span class="p">,</span> <span class="n">conf_thres</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">conf</span><span class="p">,</span>
- <span class="n">max_num_of_detections</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_predictions</span><span class="p">)</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_filter_max_predictions</span><span class="p">(</span><span class="n">nms_res</span><span class="p">)</span></div>
- <span class="k">def</span> <span class="nf">_filter_max_predictions</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="n">List</span><span class="p">)</span> <span class="o">-></span> <span class="n">List</span><span class="p">:</span>
- <span class="n">res</span><span class="p">[:]</span> <span class="o">=</span> <span class="p">[</span><span class="n">im</span><span class="p">[:</span><span class="bp">self</span><span class="o">.</span><span class="n">max_predictions</span><span class="p">]</span> <span class="k">if</span> <span class="p">(</span><span class="n">im</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">im</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">></span> <span class="bp">self</span><span class="o">.</span><span class="n">max_predictions</span><span class="p">)</span> <span class="k">else</span> <span class="n">im</span> <span class="k">for</span> <span class="n">im</span> <span class="ow">in</span> <span class="n">res</span><span class="p">]</span>
- <span class="k">return</span> <span class="n">res</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|