Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#396 Trainer constructor cleanup

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-266_clean_trainer_ctor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.utils.segmentation_utils &mdash; SuperGradients 1.0 documentation</title>
  7. <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  9. <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
  10. <!--[if lt IE 9]>
  11. <script src="../../../../_static/js/html5shiv.min.js"></script>
  12. <![endif]-->
  13. <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
  14. <script src="../../../../_static/jquery.js"></script>
  15. <script src="../../../../_static/underscore.js"></script>
  16. <script src="../../../../_static/doctools.js"></script>
  17. <script src="../../../../_static/js/theme.js"></script>
  18. <link rel="index" title="Index" href="../../../../genindex.html" />
  19. <link rel="search" title="Search" href="../../../../search.html" />
  20. </head>
  21. <body class="wy-body-for-nav">
  22. <div class="wy-grid-for-nav">
  23. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  24. <div class="wy-side-scroll">
  25. <div class="wy-side-nav-search" >
  26. <a href="../../../../index.html" class="icon icon-home"> SuperGradients
  27. </a>
  28. <div role="search">
  29. <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
  30. <input type="text" name="q" placeholder="Search docs" />
  31. <input type="hidden" name="check_keywords" value="yes" />
  32. <input type="hidden" name="area" value="default" />
  33. </form>
  34. </div>
  35. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  36. <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
  37. <ul>
  38. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -&gt; Fill Survey</a></li>
  39. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#supergradients">SuperGradients</a></li>
  40. </ul>
  41. <p class="caption"><span class="caption-text">Technical Documentation</span></p>
  42. <ul>
  43. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
  44. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
  45. </ul>
  46. <p class="caption"><span class="caption-text">User Guide</span></p>
  47. <ul>
  48. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">What is SuperGradients?</a></li>
  49. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
  50. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#installation">Installation</a></li>
  51. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
  52. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#training-parameters">Training Parameters</a></li>
  53. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
  54. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#dataset-parameters">Dataset Parameters</a></li>
  55. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#network-architectures">Network Architectures</a></li>
  56. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#pretrained-models">Pretrained Models</a></li>
  57. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
  58. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#professional-tools-integration">Professional Tools Integration</a></li>
  59. <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
  60. </ul>
  61. </div>
  62. </div>
  63. </nav>
  64. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  65. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  66. <a href="../../../../index.html">SuperGradients</a>
  67. </nav>
  68. <div class="wy-nav-content">
  69. <div class="rst-content">
  70. <div role="navigation" aria-label="Page navigation">
  71. <ul class="wy-breadcrumbs">
  72. <li><a href="../../../../index.html" class="icon icon-home"></a> &raquo;</li>
  73. <li><a href="../../../index.html">Module code</a> &raquo;</li>
  74. <li>super_gradients.training.utils.segmentation_utils</li>
  75. <li class="wy-breadcrumbs-aside">
  76. </li>
  77. </ul>
  78. <hr/>
  79. </div>
  80. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  81. <div itemprop="articleBody">
  82. <h1>Source code for super_gradients.training.utils.segmentation_utils</h1><div class="highlight"><pre>
  83. <span></span><span class="kn">import</span> <span class="nn">os</span>
  84. <span class="kn">import</span> <span class="nn">cv2</span>
  85. <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
  86. <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Callable</span>
  87. <span class="kn">import</span> <span class="nn">torch</span>
  88. <span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
  89. <span class="kn">from</span> <span class="nn">torchvision.utils</span> <span class="kn">import</span> <span class="n">draw_segmentation_masks</span>
  90. <span class="c1"># FIXME: REFACTOR AUGMENTATIONS, CONSIDER USING A MORE EFFICIENT LIBRARIES SUCH AS, IMGAUG, DALI ETC.</span>
  91. <span class="kn">from</span> <span class="nn">super_gradients.training</span> <span class="kn">import</span> <span class="n">utils</span> <span class="k">as</span> <span class="n">core_utils</span>
  92. <div class="viewcode-block" id="coco_sub_classes_inclusion_tuples_list"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.coco_sub_classes_inclusion_tuples_list">[docs]</a><span class="k">def</span> <span class="nf">coco_sub_classes_inclusion_tuples_list</span><span class="p">():</span>
  93. <span class="k">return</span> <span class="p">[(</span><span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;background&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="s1">&#39;airplane&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;bicycle&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">16</span><span class="p">,</span> <span class="s1">&#39;bird&#39;</span><span class="p">),</span>
  94. <span class="p">(</span><span class="mi">9</span><span class="p">,</span> <span class="s1">&#39;boat&#39;</span><span class="p">),</span>
  95. <span class="p">(</span><span class="mi">44</span><span class="p">,</span> <span class="s1">&#39;bottle&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">6</span><span class="p">,</span> <span class="s1">&#39;bus&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="s1">&#39;car&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">17</span><span class="p">,</span> <span class="s1">&#39;cat&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">62</span><span class="p">,</span> <span class="s1">&#39;chair&#39;</span><span class="p">),</span>
  96. <span class="p">(</span><span class="mi">21</span><span class="p">,</span> <span class="s1">&#39;cow&#39;</span><span class="p">),</span>
  97. <span class="p">(</span><span class="mi">67</span><span class="p">,</span> <span class="s1">&#39;dining table&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">18</span><span class="p">,</span> <span class="s1">&#39;dog&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">19</span><span class="p">,</span> <span class="s1">&#39;horse&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="s1">&#39;motorcycle&#39;</span><span class="p">),</span>
  98. <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="s1">&#39;person&#39;</span><span class="p">),</span>
  99. <span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="s1">&#39;potted plant&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="s1">&#39;sheep&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">63</span><span class="p">,</span> <span class="s1">&#39;couch&#39;</span><span class="p">),</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span> <span class="s1">&#39;train&#39;</span><span class="p">),</span>
  100. <span class="p">(</span><span class="mi">72</span><span class="p">,</span> <span class="s1">&#39;tv&#39;</span><span class="p">)]</span></div>
  101. <div class="viewcode-block" id="to_one_hot"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.to_one_hot">[docs]</a><span class="k">def</span> <span class="nf">to_one_hot</span><span class="p">(</span><span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">ignore_index</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
  102. <span class="sd">&quot;&quot;&quot;</span>
  103. <span class="sd"> Target label to one_hot tensor. labels and ignore_index must be consecutive numbers.</span>
  104. <span class="sd"> :param target: Class labels long tensor, with shape [N, H, W]</span>
  105. <span class="sd"> :param num_classes: num of classes in datasets excluding ignore label, this is the output channels of the one hot</span>
  106. <span class="sd"> result.</span>
  107. <span class="sd"> :return: one hot tensor with shape [N, num_classes, H, W]</span>
  108. <span class="sd"> &quot;&quot;&quot;</span>
  109. <span class="n">num_classes</span> <span class="o">=</span> <span class="n">num_classes</span> <span class="k">if</span> <span class="n">ignore_index</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">num_classes</span> <span class="o">+</span> <span class="mi">1</span>
  110. <span class="n">one_hot</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">one_hot</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">((</span><span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
  111. <span class="k">if</span> <span class="n">ignore_index</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
  112. <span class="c1"># remove ignore_index channel</span>
  113. <span class="n">one_hot</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">one_hot</span><span class="p">[:,</span> <span class="p">:</span><span class="n">ignore_index</span><span class="p">],</span> <span class="n">one_hot</span><span class="p">[:,</span> <span class="n">ignore_index</span> <span class="o">+</span> <span class="mi">1</span><span class="p">:]],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
  114. <span class="k">return</span> <span class="n">one_hot</span></div>
  115. <div class="viewcode-block" id="reverse_imagenet_preprocessing"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.reverse_imagenet_preprocessing">[docs]</a><span class="k">def</span> <span class="nf">reverse_imagenet_preprocessing</span><span class="p">(</span><span class="n">im_tensor</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">:</span>
  116. <span class="sd">&quot;&quot;&quot;</span>
  117. <span class="sd"> :param im_tensor: images in a batch after preprocessing for inference, RGB, (B, C, H, W)</span>
  118. <span class="sd"> :return: images in a batch in cv2 format, BGR, (B, H, W, C)</span>
  119. <span class="sd"> &quot;&quot;&quot;</span>
  120. <span class="n">im_np</span> <span class="o">=</span> <span class="n">im_tensor</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
  121. <span class="n">im_np</span> <span class="o">=</span> <span class="n">im_np</span><span class="p">[:,</span> <span class="p">::</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:]</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
  122. <span class="n">im_np</span> <span class="o">*=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[[</span><span class="mf">.229</span><span class="p">,</span> <span class="mf">.224</span><span class="p">,</span> <span class="mf">.225</span><span class="p">][::</span><span class="o">-</span><span class="mi">1</span><span class="p">]]])</span>
  123. <span class="n">im_np</span> <span class="o">+=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[[</span><span class="mf">.485</span><span class="p">,</span> <span class="mf">.456</span><span class="p">,</span> <span class="mf">.406</span><span class="p">][::</span><span class="o">-</span><span class="mi">1</span><span class="p">]]])</span>
  124. <span class="n">im_np</span> <span class="o">*=</span> <span class="mf">255.</span>
  125. <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">ascontiguousarray</span><span class="p">(</span><span class="n">im_np</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">uint8</span><span class="p">)</span></div>
  126. <div class="viewcode-block" id="BinarySegmentationVisualization"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.BinarySegmentationVisualization">[docs]</a><span class="k">class</span> <span class="nc">BinarySegmentationVisualization</span><span class="p">:</span>
  127. <span class="nd">@staticmethod</span>
  128. <span class="k">def</span> <span class="nf">_visualize_image</span><span class="p">(</span><span class="n">image_np</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">pred_mask</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">target_mask</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
  129. <span class="n">image_scale</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> <span class="n">checkpoint_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">image_name</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
  130. <span class="n">pred_mask</span> <span class="o">=</span> <span class="n">pred_mask</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
  131. <span class="n">image_np</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">moveaxis</span><span class="p">(</span><span class="n">image_np</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">uint8</span><span class="p">))</span>
  132. <span class="n">pred_mask</span> <span class="o">=</span> <span class="n">pred_mask</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:]</span> <span class="o">&gt;</span> <span class="mf">0.5</span>
  133. <span class="n">target_mask</span> <span class="o">=</span> <span class="n">target_mask</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">newaxis</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:]</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">bool</span><span class="p">)</span>
  134. <span class="n">tp_mask</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">logical_and</span><span class="p">(</span><span class="n">pred_mask</span><span class="p">,</span> <span class="n">target_mask</span><span class="p">)</span>
  135. <span class="n">fp_mask</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">logical_and</span><span class="p">(</span><span class="n">pred_mask</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">logical_not</span><span class="p">(</span><span class="n">target_mask</span><span class="p">))</span>
  136. <span class="n">fn_mask</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">logical_and</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">logical_not</span><span class="p">(</span><span class="n">pred_mask</span><span class="p">),</span> <span class="n">target_mask</span><span class="p">)</span>
  137. <span class="n">overlay</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">([</span><span class="n">tp_mask</span><span class="p">,</span> <span class="n">fp_mask</span><span class="p">,</span> <span class="n">fn_mask</span><span class="p">]))</span>
  138. <span class="c1"># SWITCH BETWEEN BLUE AND RED IF WE SAVE THE IMAGE ON THE DISC AS OTHERWISE WE CHANGE CHANNEL ORDERING</span>
  139. <span class="n">colors</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;green&#39;</span><span class="p">,</span> <span class="s1">&#39;red&#39;</span><span class="p">,</span> <span class="s1">&#39;blue&#39;</span><span class="p">]</span>
  140. <span class="n">res_image</span> <span class="o">=</span> <span class="n">draw_segmentation_masks</span><span class="p">(</span><span class="n">image_np</span><span class="p">,</span> <span class="n">overlay</span><span class="p">,</span> <span class="n">colors</span><span class="o">=</span><span class="n">colors</span><span class="p">)</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
  141. <span class="n">res_image</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">([</span><span class="n">res_image</span><span class="p">[</span><span class="n">ch</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:,</span> <span class="n">np</span><span class="o">.</span><span class="n">newaxis</span><span class="p">]</span> <span class="k">for</span> <span class="n">ch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">)],</span> <span class="mi">2</span><span class="p">)</span>
  142. <span class="n">res_image</span> <span class="o">=</span> <span class="n">cv2</span><span class="o">.</span><span class="n">resize</span><span class="p">(</span><span class="n">res_image</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">uint8</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">fx</span><span class="o">=</span><span class="n">image_scale</span><span class="p">,</span> <span class="n">fy</span><span class="o">=</span><span class="n">image_scale</span><span class="p">,</span>
  143. <span class="n">interpolation</span><span class="o">=</span><span class="n">cv2</span><span class="o">.</span><span class="n">INTER_NEAREST</span><span class="p">)</span>
  144. <span class="k">if</span> <span class="n">checkpoint_dir</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
  145. <span class="k">return</span> <span class="n">res_image</span>
  146. <span class="k">else</span><span class="p">:</span>
  147. <span class="n">cv2</span><span class="o">.</span><span class="n">imwrite</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">checkpoint_dir</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="n">image_name</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;.jpg&#39;</span><span class="p">),</span> <span class="n">res_image</span><span class="p">)</span>
  148. <div class="viewcode-block" id="BinarySegmentationVisualization.visualize_batch"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.BinarySegmentationVisualization.visualize_batch">[docs]</a> <span class="nd">@staticmethod</span>
  149. <span class="k">def</span> <span class="nf">visualize_batch</span><span class="p">(</span><span class="n">image_tensor</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">pred_mask</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">target_mask</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
  150. <span class="n">batch_name</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> <span class="n">checkpoint_dir</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  151. <span class="n">undo_preprocessing_func</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]</span> <span class="o">=</span> <span class="n">reverse_imagenet_preprocessing</span><span class="p">,</span>
  152. <span class="n">image_scale</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.</span><span class="p">):</span>
  153. <span class="sd">&quot;&quot;&quot;</span>
  154. <span class="sd"> A helper function to visualize detections predicted by a network:</span>
  155. <span class="sd"> saves images into a given path with a name that is {batch_name}_{imade_idx_in_the_batch}.jpg, one batch per call.</span>
  156. <span class="sd"> Colors are generated on the fly: uniformly sampled from color wheel to support all given classes.</span>
  157. <span class="sd"> :param image_tensor: rgb images, (B, H, W, 3)</span>
  158. <span class="sd"> :param pred_boxes: boxes after NMS for each image in a batch, each (Num_boxes, 6),</span>
  159. <span class="sd"> values on dim 1 are: x1, y1, x2, y2, confidence, class</span>
  160. <span class="sd"> :param target_boxes: (Num_targets, 6), values on dim 1 are: image id in a batch, class, x y w h</span>
  161. <span class="sd"> (coordinates scaled to [0, 1])</span>
  162. <span class="sd"> :param batch_name: id of the current batch to use for image naming</span>
  163. <span class="sd"> :param checkpoint_dir: a path where images with boxes will be saved. if None, the result images will</span>
  164. <span class="sd"> be returns as a list of numpy image arrays</span>
  165. <span class="sd"> :param undo_preprocessing_func: a function to convert preprocessed images tensor into a batch of cv2-like images</span>
  166. <span class="sd"> :param image_scale: scale factor for output image</span>
  167. <span class="sd"> &quot;&quot;&quot;</span>
  168. <span class="n">image_np</span> <span class="o">=</span> <span class="n">undo_preprocessing_func</span><span class="p">(</span><span class="n">image_tensor</span><span class="o">.</span><span class="n">detach</span><span class="p">())</span>
  169. <span class="n">pred_mask</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">pred_mask</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">,</span> <span class="p">:,</span> <span class="p">:])</span> <span class="c1"># comment out</span>
  170. <span class="n">out_images</span> <span class="o">=</span> <span class="p">[]</span>
  171. <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">image_np</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]):</span>
  172. <span class="n">preds</span> <span class="o">=</span> <span class="n">pred_mask</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
  173. <span class="n">targets</span> <span class="o">=</span> <span class="n">target_mask</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
  174. <span class="n">image_name</span> <span class="o">=</span> <span class="s1">&#39;_&#39;</span><span class="o">.</span><span class="n">join</span><span class="p">([</span><span class="nb">str</span><span class="p">(</span><span class="n">batch_name</span><span class="p">),</span> <span class="nb">str</span><span class="p">(</span><span class="n">i</span><span class="p">)])</span>
  175. <span class="n">res_image</span> <span class="o">=</span> <span class="n">BinarySegmentationVisualization</span><span class="o">.</span><span class="n">_visualize_image</span><span class="p">(</span><span class="n">image_np</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">preds</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">image_scale</span><span class="p">,</span>
  176. <span class="n">checkpoint_dir</span><span class="p">,</span> <span class="n">image_name</span><span class="p">)</span>
  177. <span class="k">if</span> <span class="n">res_image</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
  178. <span class="n">out_images</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">res_image</span><span class="p">)</span>
  179. <span class="k">return</span> <span class="n">out_images</span></div></div>
  180. <div class="viewcode-block" id="visualize_batches"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.visualize_batches">[docs]</a><span class="k">def</span> <span class="nf">visualize_batches</span><span class="p">(</span><span class="n">dataloader</span><span class="p">,</span> <span class="n">module</span><span class="p">,</span> <span class="n">visualization_path</span><span class="p">,</span> <span class="n">num_batches</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">undo_preprocessing_func</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
  181. <span class="n">os</span><span class="o">.</span><span class="n">makedirs</span><span class="p">(</span><span class="n">visualization_path</span><span class="p">,</span> <span class="n">exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
  182. <span class="k">for</span> <span class="n">batch_i</span><span class="p">,</span> <span class="p">(</span><span class="n">imgs</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">dataloader</span><span class="p">):</span>
  183. <span class="k">if</span> <span class="n">batch_i</span> <span class="o">==</span> <span class="n">num_batches</span><span class="p">:</span>
  184. <span class="k">return</span>
  185. <span class="n">imgs</span> <span class="o">=</span> <span class="n">core_utils</span><span class="o">.</span><span class="n">tensor_container_to_device</span><span class="p">(</span><span class="n">imgs</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">&#39;cuda:0&#39;</span><span class="p">))</span>
  186. <span class="n">targets</span> <span class="o">=</span> <span class="n">core_utils</span><span class="o">.</span><span class="n">tensor_container_to_device</span><span class="p">(</span><span class="n">targets</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">&#39;cuda:0&#39;</span><span class="p">))</span>
  187. <span class="n">pred_mask</span> <span class="o">=</span> <span class="n">module</span><span class="p">(</span><span class="n">imgs</span><span class="p">)</span>
  188. <span class="c1"># Visualize the batch</span>
  189. <span class="k">if</span> <span class="n">undo_preprocessing_func</span><span class="p">:</span>
  190. <span class="n">BinarySegmentationVisualization</span><span class="o">.</span><span class="n">visualize_batch</span><span class="p">(</span><span class="n">imgs</span><span class="p">,</span> <span class="n">pred_mask</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">batch_i</span><span class="p">,</span> <span class="n">visualization_path</span><span class="p">,</span>
  191. <span class="n">undo_preprocessing_func</span><span class="o">=</span><span class="n">undo_preprocessing_func</span><span class="p">)</span>
  192. <span class="k">else</span><span class="p">:</span>
  193. <span class="n">BinarySegmentationVisualization</span><span class="o">.</span><span class="n">visualize_batch</span><span class="p">(</span><span class="n">imgs</span><span class="p">,</span> <span class="n">pred_mask</span><span class="p">,</span> <span class="n">targets</span><span class="p">,</span> <span class="n">batch_i</span><span class="p">,</span> <span class="n">visualization_path</span><span class="p">)</span></div>
  194. <div class="viewcode-block" id="one_hot_to_binary_edge"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.one_hot_to_binary_edge">[docs]</a><span class="k">def</span> <span class="nf">one_hot_to_binary_edge</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
  195. <span class="n">kernel_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
  196. <span class="n">flatten_channels</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">:</span>
  197. <span class="sd">&quot;&quot;&quot;</span>
  198. <span class="sd"> Utils function to create edge feature maps.</span>
  199. <span class="sd"> :param x: input tensor, must be one_hot tensor with shape [B, C, H, W]</span>
  200. <span class="sd"> :param kernel_size: kernel size of dilation erosion convolutions. The result edge widths depends on this argument as</span>
  201. <span class="sd"> follows: `edge_width = kernel - 1`</span>
  202. <span class="sd"> :param flatten_channels: Whether to apply logical_or across channels dimension, if at least one pixel class is</span>
  203. <span class="sd"> considered as edge pixel flatten value is 1. If set as `False` the output tensor shape is [B, C, H, W], else</span>
  204. <span class="sd"> [B, 1, H, W]. Default is `True`.</span>
  205. <span class="sd"> :return: one_hot edge torch.Tensor.</span>
  206. <span class="sd"> &quot;&quot;&quot;</span>
  207. <span class="k">if</span> <span class="n">kernel_size</span> <span class="o">&lt;</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">kernel_size</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
  208. <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;kernel size must be an odd positive values, such as [1, 3, 5, ..], found: </span><span class="si">{</span><span class="n">kernel_size</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
  209. <span class="n">_kernel</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
  210. <span class="n">padding</span> <span class="o">=</span> <span class="p">(</span><span class="n">kernel_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span>
  211. <span class="c1"># Use replicate padding to prevent class shifting and edge formation at the image boundaries.</span>
  212. <span class="n">padded_x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">pad</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">float</span><span class="p">(),</span> <span class="n">mode</span><span class="o">=</span><span class="s2">&quot;replicate&quot;</span><span class="p">,</span> <span class="n">pad</span><span class="o">=</span><span class="p">[</span><span class="n">padding</span><span class="p">]</span> <span class="o">*</span> <span class="mi">4</span><span class="p">)</span>
  213. <span class="c1"># The binary edges feature map is created by subtracting dilated features from erosed features.</span>
  214. <span class="c1"># First the positive one value masks are expanded (dilation) by applying a sliding window filter of one values.</span>
  215. <span class="c1"># The resulted output is then clamped to binary format to [0, 1], this way the one-hot boundaries are expanded by</span>
  216. <span class="c1"># (kernel_size - 1) / 2.</span>
  217. <span class="n">dilation</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span>
  218. <span class="n">F</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span><span class="n">padded_x</span><span class="p">,</span> <span class="n">_kernel</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)),</span>
  219. <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span>
  220. <span class="p">)</span>
  221. <span class="c1"># Similar to dilation, erosion (can be seen as inverse of dilation) is applied to contract the one-hot features by</span>
  222. <span class="c1"># applying a dilation operation on the inverse of the one-hot features.</span>
  223. <span class="n">erosion</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">torch</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span>
  224. <span class="n">F</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">padded_x</span><span class="p">,</span> <span class="n">_kernel</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)),</span>
  225. <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span>
  226. <span class="p">)</span>
  227. <span class="c1"># Finally the edge features are the result of subtracting dilation by erosion.</span>
  228. <span class="c1"># i.e for a simple 1D one-hot input: [0, 0, 0, 1, 1, 1, 0, 0, 0], using sliding kernel with size 3: [1, 1, 1]</span>
  229. <span class="c1"># Dilated features: [0, 0, 1, 1, 1, 1, 1, 0, 0]</span>
  230. <span class="c1"># Erosed inverse features: [0, 0, 0, 0, 1, 0, 0, 0, 0]</span>
  231. <span class="c1"># Edge features: dilation - erosion: [0, 0, 1, 1, 0, 1, 1, 0, 0]</span>
  232. <span class="n">edge</span> <span class="o">=</span> <span class="n">dilation</span> <span class="o">-</span> <span class="n">erosion</span>
  233. <span class="k">if</span> <span class="n">flatten_channels</span><span class="p">:</span>
  234. <span class="c1"># use max operator across channels. Equivalent to logical or for input with binary values [0, 1].</span>
  235. <span class="n">edge</span> <span class="o">=</span> <span class="n">edge</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">keepdim</span><span class="o">=</span><span class="kc">True</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
  236. <span class="k">return</span> <span class="n">edge</span></div>
  237. <div class="viewcode-block" id="target_to_binary_edge"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.segmentation_utils.target_to_binary_edge">[docs]</a><span class="k">def</span> <span class="nf">target_to_binary_edge</span><span class="p">(</span><span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
  238. <span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
  239. <span class="n">kernel_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
  240. <span class="n">ignore_index</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  241. <span class="n">flatten_channels</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">:</span>
  242. <span class="sd">&quot;&quot;&quot;</span>
  243. <span class="sd"> Utils function to create edge feature maps from target.</span>
  244. <span class="sd"> :param target: Class labels long tensor, with shape [N, H, W]</span>
  245. <span class="sd"> :param num_classes: num of classes in datasets excluding ignore label, this is the output channels of the one hot</span>
  246. <span class="sd"> result.</span>
  247. <span class="sd"> :param kernel_size: kernel size of dilation erosion convolutions. The result edge widths depends on this argument as</span>
  248. <span class="sd"> follows: `edge_width = kernel - 1`</span>
  249. <span class="sd"> :param flatten_channels: Whether to apply logical or across channels dimension, if at least one pixel class is</span>
  250. <span class="sd"> considered as edge pixel flatten value is 1. If set as `False` the output tensor shape is [B, C, H, W], else</span>
  251. <span class="sd"> [B, 1, H, W]. Default is `True`.</span>
  252. <span class="sd"> :return: one_hot edge torch.Tensor.</span>
  253. <span class="sd"> &quot;&quot;&quot;</span>
  254. <span class="n">one_hot</span> <span class="o">=</span> <span class="n">to_one_hot</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">ignore_index</span><span class="o">=</span><span class="n">ignore_index</span><span class="p">)</span>
  255. <span class="k">return</span> <span class="n">one_hot_to_binary_edge</span><span class="p">(</span><span class="n">one_hot</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span> <span class="n">flatten_channels</span><span class="o">=</span><span class="n">flatten_channels</span><span class="p">)</span></div>
  256. </pre></div>
  257. </div>
  258. </div>
  259. <footer>
  260. <hr/>
  261. <div role="contentinfo">
  262. <p>&#169; Copyright 2021, SuperGradients team.</p>
  263. </div>
  264. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  265. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  266. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  267. </footer>
  268. </div>
  269. </div>
  270. </section>
  271. </div>
  272. <script>
  273. jQuery(function () {
  274. SphinxRtdTheme.Navigation.enable(true);
  275. });
  276. </script>
  277. </body>
  278. </html>
Discard
Tip!

Press p or to see the previous file or, n or to see the next file