1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.metrics.metric_utils — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -> Fill Survey</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#supergradients">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#professional-tools-integration">Professional Tools Integration</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.metrics.metric_utils</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.metrics.metric_utils</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">torchmetrics</span> <span class="kn">import</span> <span class="n">MetricCollection</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.utils</span> <span class="kn">import</span> <span class="n">AverageMeter</span>
- <div class="viewcode-block" id="get_logging_values"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.metric_utils.get_logging_values">[docs]</a><span class="k">def</span> <span class="nf">get_logging_values</span><span class="p">(</span><span class="n">loss_loggings</span><span class="p">:</span> <span class="n">AverageMeter</span><span class="p">,</span> <span class="n">metrics</span><span class="p">:</span> <span class="n">MetricCollection</span><span class="p">,</span> <span class="n">criterion</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> @param loss_loggings: AverageMeter running average for the loss items</span>
- <span class="sd"> @param metrics: MetricCollection object for running user specified metrics</span>
- <span class="sd"> @param criterion the object loss_loggings average meter is monitoring, when set to None- only the metrics values are</span>
- <span class="sd"> computed and returned.</span>
- <span class="sd"> @return: tuple of the computed values</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="n">criterion</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">loss_loggingg_avg</span> <span class="o">=</span> <span class="n">loss_loggings</span><span class="o">.</span><span class="n">average</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">loss_loggingg_avg</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">):</span>
- <span class="n">loss_loggingg_avg</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">([</span><span class="n">loss_loggingg_avg</span><span class="p">])</span>
- <span class="n">logging_vals</span> <span class="o">=</span> <span class="n">loss_loggingg_avg</span> <span class="o">+</span> <span class="n">get_metrics_results_tuple</span><span class="p">(</span><span class="n">metrics</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">logging_vals</span> <span class="o">=</span> <span class="n">get_metrics_results_tuple</span><span class="p">(</span><span class="n">metrics</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">logging_vals</span></div>
- <div class="viewcode-block" id="get_metrics_titles"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.metric_utils.get_metrics_titles">[docs]</a><span class="k">def</span> <span class="nf">get_metrics_titles</span><span class="p">(</span><span class="n">metrics_collection</span><span class="p">:</span> <span class="n">MetricCollection</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> @param metrics_collection: MetricCollection object for running user specified metrics</span>
- <span class="sd"> @return: list of all the names of the computed values list(str)</span>
- <span class="sd"> """</span>
- <span class="n">titles</span> <span class="o">=</span> <span class="p">[]</span>
- <span class="k">for</span> <span class="n">metric_name</span><span class="p">,</span> <span class="n">metric</span> <span class="ow">in</span> <span class="n">metrics_collection</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="k">if</span> <span class="n">metric_name</span> <span class="o">==</span> <span class="s2">"additional_items"</span><span class="p">:</span>
- <span class="k">continue</span>
- <span class="k">elif</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">metric</span><span class="p">,</span> <span class="s2">"component_names"</span><span class="p">):</span>
- <span class="n">titles</span> <span class="o">+=</span> <span class="n">metric</span><span class="o">.</span><span class="n">component_names</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">titles</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">metric_name</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">titles</span></div>
- <div class="viewcode-block" id="get_metrics_results_tuple"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.metric_utils.get_metrics_results_tuple">[docs]</a><span class="k">def</span> <span class="nf">get_metrics_results_tuple</span><span class="p">(</span><span class="n">metrics_collection</span><span class="p">:</span> <span class="n">MetricCollection</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> @param metrics_collection: metrics collection of the user specified metrics</span>
- <span class="sd"> @type metrics_collection</span>
- <span class="sd"> @return: tuple of metrics values</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="n">metrics_collection</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">results_tuple</span> <span class="o">=</span> <span class="p">()</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">results_tuple</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">(</span><span class="n">flatten_metrics_dict</span><span class="p">(</span><span class="n">metrics_collection</span><span class="o">.</span><span class="n">compute</span><span class="p">())</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
- <span class="k">return</span> <span class="n">results_tuple</span></div>
- <div class="viewcode-block" id="flatten_metrics_dict"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.metric_utils.flatten_metrics_dict">[docs]</a><span class="k">def</span> <span class="nf">flatten_metrics_dict</span><span class="p">(</span><span class="n">metrics_dict</span><span class="p">:</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param metrics_dict - dictionary of metric values where values can also be dictionaries containing subvalues</span>
- <span class="sd"> (in the case of compound metrics)</span>
- <span class="sd"> @return: flattened dict of metric values i.e {metric1_name: metric1_value...}</span>
- <span class="sd"> """</span>
- <span class="n">flattened</span> <span class="o">=</span> <span class="p">{}</span>
- <span class="k">for</span> <span class="n">metric_name</span><span class="p">,</span> <span class="n">metric_val</span> <span class="ow">in</span> <span class="n">metrics_dict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="k">if</span> <span class="n">metric_name</span> <span class="o">==</span> <span class="s2">"additional_items"</span><span class="p">:</span>
- <span class="k">continue</span>
- <span class="c1"># COLLECT ALL OF THE COMPONENTS IN THE CASE OF COMPOUND METRICS</span>
- <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">metric_val</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
- <span class="k">for</span> <span class="n">sub_metric_name</span><span class="p">,</span> <span class="n">sub_metric_val</span> <span class="ow">in</span> <span class="n">metric_val</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="n">flattened</span><span class="p">[</span><span class="n">sub_metric_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">sub_metric_val</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">flattened</span><span class="p">[</span><span class="n">metric_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">metric_val</span>
- <span class="k">return</span> <span class="n">flattened</span></div>
- <div class="viewcode-block" id="get_metrics_dict"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.metric_utils.get_metrics_dict">[docs]</a><span class="k">def</span> <span class="nf">get_metrics_dict</span><span class="p">(</span><span class="n">metrics_tuple</span><span class="p">,</span> <span class="n">metrics_collection</span><span class="p">,</span> <span class="n">loss_logging_item_names</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Returns a dictionary with the epoch results as values and their names as keys.</span>
- <span class="sd"> @param metrics_tuple: the result tuple</span>
- <span class="sd"> @param metrics_collection: MetricsCollection</span>
- <span class="sd"> @param loss_logging_item_names: loss component's names.</span>
- <span class="sd"> @return: dict</span>
- <span class="sd"> """</span>
- <span class="n">keys</span> <span class="o">=</span> <span class="n">loss_logging_item_names</span> <span class="o">+</span> <span class="n">get_metrics_titles</span><span class="p">(</span><span class="n">metrics_collection</span><span class="p">)</span>
- <span class="n">metrics_dict</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="n">keys</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="n">metrics_tuple</span><span class="p">)))</span>
- <span class="k">return</span> <span class="n">metrics_dict</span></div>
- <div class="viewcode-block" id="get_train_loop_description_dict"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.metric_utils.get_train_loop_description_dict">[docs]</a><span class="k">def</span> <span class="nf">get_train_loop_description_dict</span><span class="p">(</span><span class="n">metrics_tuple</span><span class="p">,</span> <span class="n">metrics_collection</span><span class="p">,</span> <span class="n">loss_logging_item_names</span><span class="p">,</span> <span class="o">**</span><span class="n">log_items</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Returns a dictionary with the epoch's logging items as values and their names as keys, with the purpose of</span>
- <span class="sd"> passing it as a description to tqdm's progress bar.</span>
- <span class="sd"> @param metrics_tuple: the result tuple</span>
- <span class="sd"> @param metrics_collection: MetricsCollection</span>
- <span class="sd"> @param loss_logging_item_names: loss component's names.</span>
- <span class="sd"> @param log_items additional logging items to be rendered.</span>
- <span class="sd"> @return: dict</span>
- <span class="sd"> """</span>
- <span class="n">log_items</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">get_metrics_dict</span><span class="p">(</span><span class="n">metrics_tuple</span><span class="p">,</span> <span class="n">metrics_collection</span><span class="p">,</span> <span class="n">loss_logging_item_names</span><span class="p">))</span>
- <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">log_items</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
- <span class="n">log_items</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
- <span class="k">return</span> <span class="n">log_items</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|