1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
- import unittest
- from super_gradients.training import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.models import LeNet
- from super_gradients.training.utils import HpmStruct, get_param
- from super_gradients.training.utils.callbacks import TestLRCallback
- import numpy as np
- class TestNet(LeNet):
- """
- Toy test net with update_param_groups method that hard codes some lr.
- """
- def __init__(self):
- super(TestNet, self).__init__()
- def update_param_groups(
- self, param_groups: list, lr: float, epoch: int, iter: int, training_params: HpmStruct, total_batch: int
- ) -> list:
- initial_lr = get_param(training_params, "initial_lr")
- for param_group in param_groups:
- param_group["lr"] = initial_lr * (epoch + 1)
- return param_groups
- class UpdateParamGroupsTest(unittest.TestCase):
- def test_lr_scheduling_with_update_param_groups(self):
- # Define Model
- net = TestNet()
- trainer = Trainer("lr_warmup_test", model_checkpoints_location='local')
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {"max_epochs": 3,
- "lr_mode": "step",
- "lr_updates": [0, 1, 2],
- "initial_lr": 0.1,
- "lr_decay_factor": 1,
- "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks,
- }
- expected_lrs = np.array([0.1, 0.2, 0.3])
- trainer.train(model=net, training_params=train_params,
- train_loader=classification_test_dataloader(),
- valid_loader=classification_test_dataloader())
- self.assertTrue(np.allclose(np.array(lrs), expected_lrs, rtol=0.0000001))
|