1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
- import unittest
- import numpy as np
- from super_gradients.training import Trainer
- from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.models import LeNet
- from super_gradients.training.utils.callbacks import TestLRCallback, LRCallbackBase, Phase
- class ExponentialWarmupLRCallback(LRCallbackBase):
- """
- LR scheduling callback for exponential warmup.
- LR grows exponentially from warmup_initial_lr to initial lr.
- When warmup_initial_lr is None- LR climb starts from 0.001
- """
- def __init__(self, **kwargs):
- super().__init__(Phase.TRAIN_EPOCH_START, **kwargs)
- self.warmup_initial_lr = self.training_params.warmup_initial_lr or 0.001
- warmup_epochs = self.training_params.lr_warmup_epochs
- lr_start = self.warmup_initial_lr
- lr_end = self.initial_lr
- self.c1 = (lr_end - lr_start) / (np.exp(warmup_epochs) - 1.)
- self.c2 = (lr_start * np.exp(warmup_epochs) - lr_end) / (np.exp(warmup_epochs) - 1.)
- def perform_scheduling(self, context):
- self.lr = self.c1 * np.exp(context.epoch) + self.c2
- self.update_lr(context.optimizer, context.epoch, None)
- def is_lr_scheduling_enabled(self, context):
- return self.training_params.lr_warmup_epochs >= context.epoch
- class LRWarmupTest(unittest.TestCase):
- def test_lr_warmup(self):
- # Define Model
- net = LeNet()
- trainer = Trainer("lr_warmup_test", model_checkpoints_location='local')
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {"max_epochs": 5, "lr_updates": [], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 3, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks,
- "warmup_mode": "linear_step"}
- expected_lrs = [0.25, 0.5, 0.75, 1.0, 1.0]
- trainer.train(model=net, training_params=train_params,
- train_loader=classification_test_dataloader(batch_size=4), valid_loader=classification_test_dataloader(batch_size=4))
- self.assertListEqual(lrs, expected_lrs)
- def test_lr_warmup_with_lr_scheduling(self):
- # Define model
- net = LeNet()
- trainer = Trainer("lr_warmup_test", model_checkpoints_location='local')
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {"max_epochs": 5, "cosine_final_lr_ratio": 0.2, "lr_mode": "cosine",
- "lr_warmup_epochs": 3, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks,
- "warmup_mode": "linear_step"}
- expected_lrs = [0.25, 0.5, 0.75, 0.9236067977499791, 0.4763932022500211]
- trainer.train(model=net, training_params=train_params,
- train_loader=classification_test_dataloader(batch_size=4, dataset_size=5),
- valid_loader=classification_test_dataloader(batch_size=4, dataset_size=5))
- # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
- # THE LRS AFTER THE UPDATE
- self.assertListEqual(lrs, expected_lrs)
- def test_warmup_initial_lr(self):
- # Define model
- net = LeNet()
- trainer = Trainer("test_warmup_initial_lr", model_checkpoints_location='local')
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {"max_epochs": 5, "lr_updates": [], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 3, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks,
- "warmup_mode": "linear_step", "initial_lr": 1, "warmup_initial_lr": 4.}
- expected_lrs = [4., 3., 2., 1., 1.]
- trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(batch_size=4, dataset_size=5),
- valid_loader=classification_test_dataloader(batch_size=4, dataset_size=5))
- self.assertListEqual(lrs, expected_lrs)
- def test_custom_lr_warmup(self):
- # Define model
- net = LeNet()
- trainer = Trainer("custom_lr_warmup_test", model_checkpoints_location='local')
- lrs = []
- phase_callbacks = [TestLRCallback(lr_placeholder=lrs)]
- train_params = {"max_epochs": 5, "lr_updates": [], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 3, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks,
- "warmup_mode": ExponentialWarmupLRCallback, "initial_lr": 1., "warmup_initial_lr": 0.1}
- expected_lrs = [0.1, 0.18102751585334242, 0.40128313980266034, 1.0, 1.0]
- trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(batch_size=4),
- valid_loader=classification_test_dataloader(batch_size=4))
- self.assertListEqual(lrs, expected_lrs)
- if __name__ == '__main__':
- unittest.main()
|