Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#381 Feature/sg 000 connect to lab

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/sg-000_connect_to_lab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
  1. """ BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
  2. Model from official source: https://github.com/microsoft/unilm/tree/master/beit
  3. At this point only the 1k fine-tuned classification weights and model configs have been added,
  4. see original source above for pre-training models and procedure.
  5. Modifications by / Copyright 2021 Ross Wightman, original copyrights below
  6. """
  7. # --------------------------------------------------------
  8. # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
  9. # Github source: https://github.com/microsoft/unilm/tree/master/beit
  10. # Copyright (c) 2021 Microsoft
  11. # Licensed under The MIT License [see LICENSE for details]
  12. # By Hangbo Bao
  13. # Based on timm and DeiT code bases
  14. # https://github.com/rwightman/pytorch-image-models/tree/master/timm
  15. # https://github.com/facebookresearch/deit/
  16. # https://github.com/facebookresearch/dino
  17. # --------------------------------------------------------'
  18. import math
  19. from functools import partial
  20. from typing import Optional, Tuple
  21. import torch
  22. import torch.nn as nn
  23. import torch.nn.functional as F
  24. from torch.utils.checkpoint import checkpoint
  25. from torch import Tensor
  26. from super_gradients.training.models.classification_models.vit import PatchEmbed
  27. from super_gradients.training.utils.regularization_utils import DropPath
  28. from super_gradients.common.abstractions.abstract_logger import get_logger
  29. from super_gradients.training.utils import HpmStruct
  30. from super_gradients.training.models import SgModule
  31. logger = get_logger(__name__)
  32. def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
  33. # Rescale the grid of position embeddings when loading from state_dict. Adapted from
  34. # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
  35. ntok_new = posemb_new.shape[1]
  36. if num_tokens:
  37. posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
  38. ntok_new -= num_tokens
  39. else:
  40. posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
  41. gs_old = int(math.sqrt(len(posemb_grid)))
  42. if not len(gs_new): # backwards compatibility
  43. gs_new = [int(math.sqrt(ntok_new))] * 2
  44. assert len(gs_new) >= 2
  45. posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
  46. posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
  47. posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
  48. posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
  49. return posemb
  50. def _no_grad_trunc_normal_(tensor, mean, std, a, b):
  51. # Cut & paste from PyTorch official master until it's in a few official releases - RW
  52. # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
  53. # TODO: remove this function on next torch version
  54. def norm_cdf(x):
  55. # Computes standard normal cumulative distribution function
  56. return (1. + math.erf(x / math.sqrt(2.))) / 2.
  57. if (mean < a - 2 * std) or (mean > b + 2 * std):
  58. logger.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
  59. "The distribution of values may be incorrect.",
  60. stacklevel=2)
  61. with torch.no_grad():
  62. # Values are generated by using a truncated uniform distribution and
  63. # then using the inverse CDF for the normal distribution.
  64. # Get upper and lower cdf values
  65. lower = norm_cdf((a - mean) / std)
  66. upper = norm_cdf((b - mean) / std)
  67. # Uniformly fill tensor with values from [l, u], then translate to
  68. # [2l-1, 2u-1].
  69. tensor.uniform_(2 * lower - 1, 2 * upper - 1)
  70. # Use inverse cdf transform for normal distribution to get truncated
  71. # standard normal
  72. tensor.erfinv_()
  73. # Transform to proper mean, std
  74. tensor.mul_(std * math.sqrt(2.))
  75. tensor.add_(mean)
  76. # Clamp to ensure it's in the proper range
  77. tensor.clamp_(min=a, max=b)
  78. return tensor
  79. def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
  80. # type: (Tensor, float, float, float, float) -> Tensor
  81. r"""Fills the input Tensor with values drawn from a truncated
  82. normal distribution. The values are effectively drawn from the
  83. normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
  84. with values outside :math:`[a, b]` redrawn until they are within
  85. the bounds. The method used for generating the random values works
  86. best when :math:`a \leq \text{mean} \leq b`.
  87. Args:
  88. tensor: an n-dimensional `torch.Tensor`
  89. mean: the mean of the normal distribution
  90. std: the standard deviation of the normal distribution
  91. a: the minimum cutoff value
  92. b: the maximum cutoff value
  93. Examples:
  94. >>> w = torch.empty(3, 5)
  95. >>> nn.init.trunc_normal_(w)
  96. """
  97. return _no_grad_trunc_normal_(tensor, mean, std, a, b)
  98. class Mlp(nn.Module):
  99. """ MLP as used in Vision Transformer, MLP-Mixer and related networks
  100. """
  101. def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
  102. super().__init__()
  103. out_features = out_features or in_features
  104. hidden_features = hidden_features or in_features
  105. self.fc1 = nn.Linear(in_features, hidden_features)
  106. self.act = act_layer()
  107. self.drop1 = nn.Dropout(drop)
  108. self.fc2 = nn.Linear(hidden_features, out_features)
  109. self.drop2 = nn.Dropout(drop)
  110. def forward(self, x):
  111. x = self.fc1(x)
  112. x = self.act(x)
  113. x = self.drop1(x)
  114. x = self.fc2(x)
  115. x = self.drop2(x)
  116. return x
  117. def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor:
  118. num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
  119. # cls to token & token 2 cls & cls to cls
  120. # get pair-wise relative position index for each token inside the window
  121. window_area = window_size[0] * window_size[1]
  122. coords = torch.stack(torch.meshgrid(
  123. [torch.arange(window_size[0]),
  124. torch.arange(window_size[1])])) # 2, Wh, Ww
  125. coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
  126. relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
  127. relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
  128. relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
  129. relative_coords[:, :, 1] += window_size[1] - 1
  130. relative_coords[:, :, 0] *= 2 * window_size[1] - 1
  131. relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
  132. relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
  133. relative_position_index[0, 0:] = num_relative_distance - 3
  134. relative_position_index[0:, 0] = num_relative_distance - 2
  135. relative_position_index[0, 0] = num_relative_distance - 1
  136. return relative_position_index
  137. class Attention(nn.Module):
  138. def __init__(
  139. self, dim, num_heads=8, qkv_bias=False, attn_drop=0.,
  140. proj_drop=0., window_size=None, attn_head_dim=None):
  141. super().__init__()
  142. self.num_heads = num_heads
  143. head_dim = dim // num_heads
  144. if attn_head_dim is not None:
  145. head_dim = attn_head_dim
  146. all_head_dim = head_dim * self.num_heads
  147. self.scale = head_dim ** -0.5
  148. self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
  149. if qkv_bias:
  150. self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
  151. self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False)
  152. self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
  153. else:
  154. self.q_bias = None
  155. self.k_bias = None
  156. self.v_bias = None
  157. if window_size:
  158. self.window_size = window_size
  159. self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
  160. self.relative_position_bias_table = nn.Parameter(
  161. torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
  162. self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
  163. else:
  164. self.window_size = None
  165. self.relative_position_bias_table = None
  166. self.relative_position_index = None
  167. self.attn_drop = nn.Dropout(attn_drop)
  168. self.proj = nn.Linear(all_head_dim, dim)
  169. self.proj_drop = nn.Dropout(proj_drop)
  170. def _get_rel_pos_bias(self):
  171. relative_position_bias = self.relative_position_bias_table[
  172. self.relative_position_index.view(-1)].view(
  173. self.window_size[0] * self.window_size[1] + 1,
  174. self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
  175. relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
  176. return relative_position_bias.unsqueeze(0)
  177. def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
  178. B, N, C = x.shape
  179. qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
  180. qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
  181. qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
  182. q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
  183. q = q * self.scale
  184. attn = (q @ k.transpose(-2, -1))
  185. if self.relative_position_bias_table is not None:
  186. attn = attn + self._get_rel_pos_bias()
  187. if shared_rel_pos_bias is not None:
  188. attn = attn + shared_rel_pos_bias
  189. attn = attn.softmax(dim=-1)
  190. attn = self.attn_drop(attn)
  191. x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
  192. x = self.proj(x)
  193. x = self.proj_drop(x)
  194. return x
  195. class Block(nn.Module):
  196. def __init__(
  197. self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
  198. drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
  199. window_size=None, attn_head_dim=None):
  200. super().__init__()
  201. self.norm1 = norm_layer(dim)
  202. self.attn = Attention(
  203. dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
  204. window_size=window_size, attn_head_dim=attn_head_dim)
  205. # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
  206. self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
  207. self.norm2 = norm_layer(dim)
  208. mlp_hidden_dim = int(dim * mlp_ratio)
  209. self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
  210. if init_values:
  211. self.gamma_1 = nn.Parameter(init_values * torch.ones(dim), requires_grad=True)
  212. self.gamma_2 = nn.Parameter(init_values * torch.ones(dim), requires_grad=True)
  213. else:
  214. self.gamma_1, self.gamma_2 = None, None
  215. def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
  216. if self.gamma_1 is None:
  217. x = x + self.drop_path(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
  218. x = x + self.drop_path(self.mlp(self.norm2(x)))
  219. else:
  220. x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
  221. x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
  222. return x
  223. class RelativePositionBias(nn.Module):
  224. def __init__(self, window_size, num_heads):
  225. super().__init__()
  226. self.window_size = window_size
  227. self.window_area = window_size[0] * window_size[1]
  228. num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
  229. self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
  230. # trunc_normal_(self.relative_position_bias_table, std=.02)
  231. self.register_buffer("relative_position_index", gen_relative_position_index(window_size))
  232. def forward(self):
  233. relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
  234. self.window_area + 1, self.window_area + 1, -1) # Wh*Ww,Wh*Ww,nH
  235. return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
  236. class Beit(SgModule):
  237. """ Vision Transformer with support for patch or hybrid CNN input stage
  238. """
  239. def __init__(
  240. self, image_size=(224, 224), patch_size=16, in_chans=3, num_classes=1000, global_pool='avg',
  241. embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0.,
  242. attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
  243. init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
  244. head_init_scale=0.001, **kwargs):
  245. super().__init__()
  246. self.num_classes = num_classes
  247. self.global_pool = global_pool
  248. self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
  249. self.grad_checkpointing = False
  250. self.patch_embed = PatchEmbed(
  251. img_size=image_size, patch_size=patch_size, in_channels=in_chans, hidden_dim=embed_dim)
  252. num_patches = self.patch_embed.num_patches
  253. self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
  254. # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
  255. self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None
  256. self.pos_drop = nn.Dropout(p=drop_rate)
  257. if use_shared_rel_pos_bias:
  258. self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.grid_size, num_heads=num_heads)
  259. else:
  260. self.rel_pos_bias = None
  261. dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
  262. self.blocks = nn.ModuleList([
  263. Block(
  264. dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
  265. drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
  266. init_values=init_values, window_size=self.patch_embed.grid_size if use_rel_pos_bias else None)
  267. for i in range(depth)])
  268. use_fc_norm = self.global_pool == 'avg'
  269. self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim)
  270. self.fc_norm = norm_layer(embed_dim) if use_fc_norm else None
  271. self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
  272. self.apply(self._init_weights)
  273. if self.pos_embed is not None:
  274. trunc_normal_(self.pos_embed, std=.02)
  275. trunc_normal_(self.cls_token, std=.02)
  276. # trunc_normal_(self.mask_token, std=.02)
  277. self.fix_init_weight()
  278. if isinstance(self.head, nn.Linear):
  279. trunc_normal_(self.head.weight, std=.02)
  280. self.head.weight.data.mul_(head_init_scale)
  281. self.head.bias.data.mul_(head_init_scale)
  282. def fix_init_weight(self):
  283. def rescale(param, layer_id):
  284. param.div_(math.sqrt(2.0 * layer_id))
  285. for layer_id, layer in enumerate(self.blocks):
  286. rescale(layer.attn.proj.weight.data, layer_id + 1)
  287. rescale(layer.mlp.fc2.weight.data, layer_id + 1)
  288. def _init_weights(self, m):
  289. if isinstance(m, nn.Linear):
  290. trunc_normal_(m.weight, std=.02)
  291. if isinstance(m, nn.Linear) and m.bias is not None:
  292. nn.init.constant_(m.bias, 0)
  293. elif isinstance(m, nn.LayerNorm):
  294. nn.init.constant_(m.bias, 0)
  295. nn.init.constant_(m.weight, 1.0)
  296. @torch.jit.ignore
  297. def no_weight_decay(self):
  298. nwd = {'pos_embed', 'cls_token'}
  299. for n, _ in self.named_parameters():
  300. if 'relative_position_bias_table' in n:
  301. nwd.add(n)
  302. return nwd
  303. @torch.jit.ignore
  304. def set_grad_checkpointing(self, enable=True):
  305. self.grad_checkpointing = enable
  306. @torch.jit.ignore
  307. def group_matcher(self, coarse=False):
  308. matcher = dict(
  309. stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias', # stem and embed
  310. blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))],
  311. )
  312. return matcher
  313. @torch.jit.ignore
  314. def get_classifier(self):
  315. return self.head
  316. def reset_classifier(self, num_classes, global_pool=None):
  317. self.num_classes = num_classes
  318. if global_pool is not None:
  319. self.global_pool = global_pool
  320. self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
  321. def forward_features(self, x):
  322. x = self.patch_embed(x)
  323. x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
  324. if self.pos_embed is not None:
  325. x = x + self.pos_embed
  326. x = self.pos_drop(x)
  327. rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
  328. for blk in self.blocks:
  329. if self.grad_checkpointing and not torch.jit.is_scripting():
  330. x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias)
  331. else:
  332. x = blk(x, shared_rel_pos_bias=rel_pos_bias)
  333. x = self.norm(x)
  334. return x
  335. def forward_head(self, x, pre_logits: bool = False):
  336. if self.fc_norm is not None:
  337. x = x[:, 1:].mean(dim=1)
  338. x = self.fc_norm(x)
  339. else:
  340. x = x[:, 0]
  341. return x if pre_logits else self.head(x)
  342. def forward(self, x):
  343. x = self.forward_features(x)
  344. x = self.forward_head(x)
  345. return x
  346. def replace_head(self, new_num_classes=None, new_head=None):
  347. if new_num_classes is None and new_head is None:
  348. raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
  349. if new_head is not None:
  350. self.head = new_head
  351. else:
  352. self.head = nn.Linear(self.head.in_features, new_num_classes)
  353. def beit_base_patch16_224(arch_params: HpmStruct):
  354. model_kwargs = HpmStruct(patch_size=(16, 16),
  355. embed_dim=768,
  356. depth=12,
  357. num_heads=12,
  358. mlp_ratio=4,
  359. use_abs_pos_emb=False,
  360. use_rel_pos_bias=True,
  361. init_values=0.1)
  362. model_kwargs.override(**arch_params.to_dict())
  363. model = Beit(**model_kwargs.to_dict())
  364. return model
  365. def beit_large_patch16_224(arch_params: HpmStruct):
  366. model_kwargs = HpmStruct(patch_size=(16, 16),
  367. embed_dim=1024,
  368. depth=24,
  369. num_heads=16,
  370. mlp_ratio=4,
  371. qkv_bias=True,
  372. use_abs_pos_emb=False,
  373. use_rel_pos_bias=True,
  374. init_values=1e-5)
  375. model_kwargs.override(**arch_params.to_dict())
  376. model = Beit(**model_kwargs.to_dict())
  377. return model
Discard
Tip!

Press p or to see the previous file or, n or to see the next file