1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
|
- import os.path
- import pkg_resources
- from typing import Dict
- import hydra
- from hydra import compose, initialize_config_dir
- from hydra.core.global_hydra import GlobalHydra
- import numpy as np
- import torch
- from torch.utils.data import BatchSampler, DataLoader, TensorDataset
- import super_gradients
- from super_gradients.training.datasets.detection_datasets.pascal_voc_detection import \
- PascalVOCUnifiedDetectionTrainDataset, PascalVOCDetectionDataset
- from super_gradients.training.utils import get_param
- from super_gradients.training.datasets import ImageNetDataset
- from super_gradients.training.datasets.detection_datasets import COCODetectionDataset
- from super_gradients.training.datasets.classification_datasets.cifar import Cifar10, Cifar100
- from super_gradients.training.datasets.segmentation_datasets import CityscapesDataset, CoCoSegmentationDataSet, \
- PascalAUG2012SegmentationDataSet, \
- PascalVOC2012SegmentationDataSet, SuperviselyPersonsDataset
- from super_gradients.common.factories.samplers_factory import SamplersFactory
- from super_gradients.training.utils.distributed_training_utils import wait_for_the_master, get_local_rank
- from super_gradients.common.abstractions.abstract_logger import get_logger
- from super_gradients.training.utils.utils import override_default_params_without_nones
- logger = get_logger(__name__)
- def get_data_loader(config_name, dataset_cls, train, dataset_params=None, dataloader_params=None):
- """
- Class for creating dataloaders for taking defaults from yaml files in src/super_gradients/recipes.
- :param config_name: yaml config filename in recipes (for example coco2017_yolox).
- :param dataset_cls: torch dataset uninitialized class.
- :param train: controls whether to take
- cfg.dataset_params.train_dataloader_params or cfg.dataset_params.valid_dataloader_params as defaults for the dataset constructor
- and
- cfg.dataset_params.train_dataset_params or cfg.dataset_params.valid_dataset_params as defaults for DataLoader contructor.
- :param dataset_params: dataset params that override the yaml configured defaults, then passed to the dataset_cls.__init__.
- :param dataloader_params: DataLoader params that override the yaml configured defaults, then passed to the DataLoader.__init__
- :return: DataLoader
- """
- if dataloader_params is None:
- dataloader_params = dict()
- if dataset_params is None:
- dataset_params = dict()
- GlobalHydra.instance().clear()
- with initialize_config_dir(config_dir=pkg_resources.resource_filename("super_gradients.recipes", "")):
- # config is relative to a module
- cfg = compose(config_name=os.path.join("dataset_params", config_name))
- dataset_params = _process_dataset_params(cfg, dataset_params, train)
- local_rank = get_local_rank()
- with wait_for_the_master(local_rank):
- dataset = dataset_cls(**dataset_params)
- if not hasattr(dataset, 'dataset_params'):
- dataset.dataset_params = dataset_params
- dataloader_params = _process_dataloader_params(cfg, dataloader_params, dataset, train)
- dataloader = DataLoader(dataset=dataset, **dataloader_params)
- dataloader.dataloader_params = dataloader_params
- return dataloader
- def _process_dataset_params(cfg, dataset_params, train):
- default_dataset_params = cfg.dataset_params.train_dataset_params if train else cfg.dataset_params.val_dataset_params
- default_dataset_params = hydra.utils.instantiate(default_dataset_params)
- for key, val in default_dataset_params.items():
- if key not in dataset_params.keys() or dataset_params[key] is None:
- dataset_params[key] = val
- return dataset_params
- def _process_dataloader_params(cfg, dataloader_params, dataset, train):
- default_dataloader_params = cfg.dataset_params.train_dataloader_params if train else cfg.dataset_params.val_dataloader_params
- default_dataloader_params = hydra.utils.instantiate(default_dataloader_params)
- is_dist = super_gradients.is_distributed()
- if get_param(dataloader_params, "sampler") is not None:
- dataloader_params = _instantiate_sampler(dataset, dataloader_params)
- elif get_param(default_dataloader_params, "sampler") is not None:
- default_dataloader_params = _instantiate_sampler(dataset, default_dataloader_params)
- elif is_dist:
- default_dataloader_params["sampler"] = {"DistributedSampler": {}}
- default_dataloader_params = _instantiate_sampler(dataset, default_dataloader_params)
- dataloader_params = override_default_params_without_nones(dataloader_params, default_dataloader_params)
- if get_param(dataloader_params, "batch_sampler"):
- sampler = dataloader_params.pop("sampler")
- batch_size = dataloader_params.pop("batch_size")
- dataloader_params["batch_sampler"] = BatchSampler(sampler=sampler, batch_size=batch_size, drop_last=False)
- return dataloader_params
- def _instantiate_sampler(dataset, dataloader_params):
- sampler_name = list(dataloader_params["sampler"].keys())[0]
- dataloader_params["sampler"][sampler_name]["dataset"] = dataset
- dataloader_params["sampler"] = SamplersFactory().get(dataloader_params["sampler"])
- return dataloader_params
- def coco2017_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="coco_detection_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def coco2017_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="coco_detection_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def coco2017_train_yolox(dataset_params: Dict = None, dataloader_params: Dict = None):
- return coco2017_train(dataset_params, dataloader_params)
- def coco2017_val_yolox(dataset_params: Dict = None, dataloader_params: Dict = None):
- return coco2017_val(dataset_params, dataloader_params)
- def coco2017_train_ssd_lite_mobilenet_v2(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="coco_detection_ssd_lite_mobilenet_v2_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def coco2017_val_ssd_lite_mobilenet_v2(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="coco_detection_ssd_lite_mobilenet_v2_dataset_params",
- dataset_cls=COCODetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def imagenet_train(dataset_params=None, dataloader_params=None, config_name="imagenet_dataset_params"):
- return get_data_loader(config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params)
- def imagenet_val(dataset_params=None, dataloader_params=None, config_name="imagenet_dataset_params"):
- return get_data_loader(config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params)
- def imagenet_efficientnet_train(dataset_params=None, dataloader_params=None):
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_efficientnet_dataset_params")
- def imagenet_efficientnet_val(dataset_params=None, dataloader_params=None):
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_efficientnet_dataset_params")
- def imagenet_mobilenetv2_train(dataset_params=None, dataloader_params=None):
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_mobilenetv2_dataset_params")
- def imagenet_mobilenetv2_val(dataset_params=None, dataloader_params=None):
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_mobilenetv2_dataset_params")
- def imagenet_mobilenetv3_train(dataset_params=None, dataloader_params=None):
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_mobilenetv3_dataset_params")
- def imagenet_mobilenetv3_val(dataset_params=None, dataloader_params=None):
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_mobilenetv3_dataset_params")
- def imagenet_regnetY_train(dataset_params=None, dataloader_params=None):
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_regnetY_dataset_params")
- def imagenet_regnetY_val(dataset_params=None, dataloader_params=None):
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_regnetY_dataset_params")
- def imagenet_resnet50_train(dataset_params=None, dataloader_params=None):
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_resnet50_dataset_params")
- def imagenet_resnet50_val(dataset_params=None, dataloader_params=None):
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_resnet50_dataset_params")
- def imagenet_resnet50_kd_train(dataset_params=None, dataloader_params=None):
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_resnet50_kd_dataset_params")
- def imagenet_resnet50_kd_val(dataset_params=None, dataloader_params=None):
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_resnet50_kd_dataset_params")
- def imagenet_vit_base_train(dataset_params=None, dataloader_params=None):
- return imagenet_train(dataset_params, dataloader_params, config_name="imagenet_vit_base_dataset_params")
- def imagenet_vit_base_val(dataset_params=None, dataloader_params=None):
- return imagenet_val(dataset_params, dataloader_params, config_name="imagenet_vit_base_dataset_params")
- def tiny_imagenet_train(dataset_params=None, dataloader_params=None, config_name="tiny_imagenet_dataset_params"):
- return get_data_loader(config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params)
- def tiny_imagenet_val(dataset_params=None, dataloader_params=None, config_name="tiny_imagenet_dataset_params"):
- return get_data_loader(config_name=config_name,
- dataset_cls=ImageNetDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params)
- def cifar10_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cifar10_dataset_params",
- dataset_cls=Cifar10,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cifar10_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cifar10_dataset_params",
- dataset_cls=Cifar10,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cifar100_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cifar100_dataset_params",
- dataset_cls=Cifar100,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cifar100_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cifar100_dataset_params",
- dataset_cls=Cifar100,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def classification_test_dataloader(batch_size: int = 5, image_size: int = 32, dataset_size=None) -> DataLoader:
- dataset_size = dataset_size or batch_size
- images = torch.Tensor(np.zeros((dataset_size, 3, image_size, image_size)))
- ground_truth = torch.LongTensor(np.zeros((dataset_size)))
- dataset = TensorDataset(images, ground_truth)
- return DataLoader(dataset=dataset, batch_size=batch_size)
- def detection_test_dataloader(batch_size: int = 5, image_size: int = 320, dataset_size=None) -> DataLoader:
- dataset_size = dataset_size or batch_size
- images = torch.Tensor(np.zeros((dataset_size, 3, image_size, image_size)))
- ground_truth = torch.Tensor(np.zeros((dataset_size, 6)))
- dataset = TensorDataset(images, ground_truth)
- return DataLoader(dataset=dataset, batch_size=batch_size)
- def segmentation_test_dataloader(batch_size: int = 5, image_size: int = 512, dataset_size=None) -> DataLoader:
- dataset_size = dataset_size or batch_size
- images = torch.Tensor(np.zeros((dataset_size, 3, image_size, image_size)))
- ground_truth = torch.LongTensor(np.zeros((dataset_size, image_size, image_size)))
- dataset = TensorDataset(images, ground_truth)
- return DataLoader(dataset=dataset, batch_size=batch_size)
- def cityscapes_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_stdc_seg50_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_stdc_seg50_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_stdc_seg50_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_stdc_seg50_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_stdc_seg75_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_stdc_seg75_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_stdc_seg75_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_stdc_seg75_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_regseg48_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_regseg48_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_regseg48_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_regseg48_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_ddrnet_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_ddrnet_dataset_params",
- dataset_cls=CityscapesDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def cityscapes_ddrnet_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="cityscapes_ddrnet_dataset_params",
- dataset_cls=CityscapesDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def coco_segmentation_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="coco_segmentation_dataset_params",
- dataset_cls=CoCoSegmentationDataSet,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def coco_segmentation_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="coco_segmentation_dataset_params",
- dataset_cls=CoCoSegmentationDataSet,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def pascal_aug_segmentation_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="pascal_aug_segmentation_dataset_params",
- dataset_cls=PascalAUG2012SegmentationDataSet,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def pascal_aug_segmentation_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="pascal_aug_segmentation_dataset_params",
- dataset_cls=PascalAUG2012SegmentationDataSet,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def pascal_voc_segmentation_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="pascal_voc_segmentation_dataset_params",
- dataset_cls=PascalVOC2012SegmentationDataSet,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def pascal_voc_segmentation_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="pascal_voc_segmentation_dataset_params",
- dataset_cls=PascalVOC2012SegmentationDataSet,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def supervisely_persons_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="supervisely_persons_dataset_params",
- dataset_cls=SuperviselyPersonsDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params)
- def supervisely_persons_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="supervisely_persons_dataset_params",
- dataset_cls=SuperviselyPersonsDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params)
- def pascal_voc_detection_train(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="pascal_voc_detection_dataset_params",
- dataset_cls=PascalVOCUnifiedDetectionTrainDataset,
- train=True,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- def pascal_voc_detection_val(dataset_params: Dict = None, dataloader_params: Dict = None):
- return get_data_loader(config_name="pascal_voc_detection_dataset_params",
- dataset_cls=PascalVOCDetectionDataset,
- train=False,
- dataset_params=dataset_params,
- dataloader_params=dataloader_params
- )
- ALL_DATALOADERS = {"coco2017_train": coco2017_train,
- "coco2017_val": coco2017_val,
- "coco2017_train_yolox": coco2017_train_yolox,
- "coco2017_val_yolox": coco2017_val_yolox,
- "coco2017_train_ssd_lite_mobilenet_v2": coco2017_train_ssd_lite_mobilenet_v2,
- "coco2017_val_ssd_lite_mobilenet_v2": coco2017_val_ssd_lite_mobilenet_v2,
- "imagenet_train": imagenet_train,
- "imagenet_val": imagenet_val,
- "imagenet_efficientnet_train": imagenet_efficientnet_train,
- "imagenet_efficientnet_val": imagenet_efficientnet_val,
- "imagenet_mobilenetv2_train": imagenet_mobilenetv2_train,
- "imagenet_mobilenetv2_val": imagenet_mobilenetv2_val,
- "imagenet_mobilenetv3_train": imagenet_mobilenetv3_train,
- "imagenet_mobilenetv3_val": imagenet_mobilenetv3_val,
- "imagenet_regnetY_train": imagenet_regnetY_train,
- "imagenet_regnetY_val": imagenet_regnetY_val,
- "imagenet_resnet50_train": imagenet_resnet50_train,
- "imagenet_resnet50_val": imagenet_resnet50_val,
- "imagenet_resnet50_kd_train": imagenet_resnet50_kd_train,
- "imagenet_resnet50_kd_val": imagenet_resnet50_kd_val,
- "imagenet_vit_base_train": imagenet_vit_base_train,
- "imagenet_vit_base_val": imagenet_vit_base_val,
- "tiny_imagenet_train": tiny_imagenet_train,
- "tiny_imagenet_val": tiny_imagenet_val,
- "cifar10_train": cifar10_train,
- "cifar10_val": cifar10_val,
- "cifar100_train": cifar100_train,
- "cifar100_val": cifar100_val,
- "cityscapes_train": cityscapes_train,
- "cityscapes_val": cityscapes_val,
- "cityscapes_stdc_seg50_train": cityscapes_stdc_seg50_train,
- "cityscapes_stdc_seg50_val": cityscapes_stdc_seg50_val,
- "cityscapes_stdc_seg75_train": cityscapes_stdc_seg75_train,
- "cityscapes_stdc_seg75_val": cityscapes_stdc_seg75_val,
- "cityscapes_regseg48_train": cityscapes_regseg48_train,
- "cityscapes_regseg48_val": cityscapes_regseg48_val,
- "cityscapes_ddrnet_train": cityscapes_ddrnet_train,
- "cityscapes_ddrnet_val": cityscapes_ddrnet_val,
- "coco_segmentation_train": coco_segmentation_train,
- "coco_segmentation_val": coco_segmentation_val,
- "pascal_aug_segmentation_train": pascal_aug_segmentation_train,
- "pascal_aug_segmentation_val": pascal_aug_segmentation_val,
- "pascal_voc_segmentation_train": pascal_voc_segmentation_train,
- "pascal_voc_segmentation_val": pascal_voc_segmentation_val,
- "supervisely_persons_train": supervisely_persons_train,
- "supervisely_persons_val": supervisely_persons_val,
- "pascal_voc_detection_train": pascal_voc_detection_train,
- "pascal_voc_detection_val": pascal_voc_detection_val
- }
- def get(name: str, dataset_params: Dict = None, dataloader_params: Dict = None) -> DataLoader:
- """
- Get DataLoader of the recipe-configured dataset defined by name in ALL_DATALOADERS.
- :param name: dataset name in ALL_DATALOADERS.
- :param dataset_params: dataset params that override the yaml configured defaults, then passed to the dataset_cls.__init__.
- :param dataloader_params: DataLoader params that override the yaml configured defaults, then passed to the DataLoader.__init__
- :return: initialized DataLoader.
- """
- if name not in ALL_DATALOADERS.keys():
- raise ValueError("Unsupported dataloader: " + str(name))
- dataloader_cls = ALL_DATALOADERS[name]
- return dataloader_cls(dataset_params=dataset_params, dataloader_params=dataloader_params)
|