Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#381 Feature/sg 000 connect to lab

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/sg-000_connect_to_lab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
  1. # ResNet50 Imagenet classification training:
  2. # This example trains with batch_size = 64 * 4 GPUs, total 256.
  3. # Training time on 4 x GeForce RTX A5000 is 15min / epoch.
  4. # Reach => 79.47 Top1 accuracy.
  5. #
  6. # Log and tensorboard at s3://deci-pretrained-models/ResNet50_ImageNet/average_model.pth
  7. # Instructions:
  8. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  9. # 1. Move to the project root (where you will find the ReadMe and src folder)
  10. # 2. Run the command:
  11. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_resnet50
  12. defaults:
  13. - training_hyperparams: imagenet_resnet50_train_params
  14. - dataset_params: imagenet_resnet50_dataset_params
  15. - arch_params: resnet50_arch_params
  16. - checkpoint_params: default_checkpoint_params
  17. arch_params:
  18. droppath_prob: 0.05
  19. train_dataloader: imagenet_train
  20. val_dataloader: imagenet_val
  21. model_checkpoints_location: local
  22. resume: False
  23. training_hyperparams:
  24. resume: ${resume}
  25. experiment_name: resnet50_imagenet
  26. ckpt_root_dir:
  27. multi_gpu: DDP
  28. num_gpus: 4
  29. architecture: resnet50
Discard
Tip!

Press p or to see the previous file or, n or to see the next file