Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#381 Feature/sg 000 connect to lab

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/sg-000_connect_to_lab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
  1. # Cifar10 Classification Training:
  2. # Reaches ~94.9 Accuracy after 250 Epochs
  3. import super_gradients
  4. from super_gradients import Trainer
  5. from super_gradients.training import models, dataloaders
  6. from super_gradients.training.metrics.classification_metrics import Accuracy, Top5
  7. from super_gradients.training.utils.early_stopping import EarlyStop
  8. from super_gradients.training.utils.callbacks import Phase
  9. # Define Parameters
  10. super_gradients.init_trainer()
  11. early_stop_acc = EarlyStop(Phase.VALIDATION_EPOCH_END, monitor="Accuracy", mode="max", patience=3, verbose=True)
  12. early_stop_val_loss = EarlyStop(Phase.VALIDATION_EPOCH_END, monitor="Loss", mode="min", patience=3, verbose=True)
  13. train_params = {"max_epochs": 250, "lr_updates": [100, 150, 200], "lr_decay_factor": 0.1, "lr_mode": "step",
  14. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
  15. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  16. "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
  17. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  18. "greater_metric_to_watch_is_better": True, "phase_callbacks": [early_stop_acc, early_stop_val_loss]}
  19. # Define Model
  20. trainer = Trainer("Callback_Example")
  21. # Build Model
  22. model = models.get("resnet18_cifar", num_classes=10)
  23. trainer.train(model=model, training_params=train_params,
  24. train_loader=dataloaders.cifar10_train(), valid_loader=dataloaders.cifar10_val())
Discard
Tip!

Press p or to see the previous file or, n or to see the next file