Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#378 Feature/sg 281 add kd notebook

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-281-add_kd_notebook
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  1. import math
  2. import time
  3. from functools import lru_cache
  4. from pathlib import Path
  5. from typing import Mapping, Optional, Tuple, Union, List, Dict
  6. from zipfile import ZipFile
  7. import os
  8. from jsonschema import validate
  9. import tarfile
  10. from PIL import Image, ExifTags
  11. import torch
  12. import torch.nn as nn
  13. # These functions changed from torch 1.2 to torch 1.3
  14. import random
  15. import numpy as np
  16. from importlib import import_module
  17. from super_gradients.common.abstractions.abstract_logger import get_logger
  18. logger = get_logger(__name__)
  19. def empty_list():
  20. """Instantiate an empty list. This is a workaround to generate a list with a function call in hydra, instead of the "[]"."""
  21. return list()
  22. def convert_to_tensor(array):
  23. """Converts numpy arrays and lists to Torch tensors before calculation losses
  24. :param array: torch.tensor / Numpy array / List
  25. """
  26. return torch.FloatTensor(array) if type(array) != torch.Tensor else array
  27. class HpmStruct:
  28. def __init__(self, **entries):
  29. self.__dict__.update(entries)
  30. self.schema = None
  31. def set_schema(self, schema: dict):
  32. self.schema = schema
  33. def override(self, **entries):
  34. recursive_override(self.__dict__, entries)
  35. def to_dict(self):
  36. return self.__dict__
  37. def validate(self):
  38. """
  39. Validate the current dict values according to the provided schema
  40. :raises
  41. `AttributeError` if schema was not set
  42. `jsonschema.exceptions.ValidationError` if the instance is invalid
  43. `jsonschema.exceptions.SchemaError` if the schema itselfis invalid
  44. """
  45. if self.schema is None:
  46. raise AttributeError('schema was not set')
  47. else:
  48. validate(self.__dict__, self.schema)
  49. class WrappedModel(nn.Module):
  50. def __init__(self, module):
  51. super(WrappedModel, self).__init__()
  52. self.module = module # that I actually define.
  53. def forward(self, x):
  54. return self.module(x)
  55. class Timer:
  56. """A class to measure time handling both GPU & CPU processes
  57. Returns time in milliseconds"""
  58. def __init__(self, device: str):
  59. """
  60. :param device: str
  61. 'cpu'\'cuda'
  62. """
  63. self.on_gpu = (device == 'cuda')
  64. # On GPU time is measured using cuda.events
  65. if self.on_gpu:
  66. self.starter = torch.cuda.Event(enable_timing=True)
  67. self.ender = torch.cuda.Event(enable_timing=True)
  68. # On CPU time is measured using time
  69. else:
  70. self.starter, self.ender = 0, 0
  71. def start(self):
  72. if self.on_gpu:
  73. self.starter.record()
  74. else:
  75. self.starter = time.time()
  76. def stop(self):
  77. if self.on_gpu:
  78. self.ender.record()
  79. torch.cuda.synchronize()
  80. timer = self.starter.elapsed_time(self.ender)
  81. else:
  82. # Time measures in seconds -> convert to milliseconds
  83. timer = (time.time() - self.starter) * 1000
  84. # Return time in milliseconds
  85. return timer
  86. class AverageMeter:
  87. """A class to calculate the average of a metric, for each batch
  88. during training/testing"""
  89. def __init__(self):
  90. self._sum = None
  91. self._count = 0
  92. def update(self, value: Union[float, tuple, list, torch.Tensor], batch_size: int):
  93. if not isinstance(value, torch.Tensor):
  94. value = torch.tensor(value)
  95. if self._sum is None:
  96. self._sum = value * batch_size
  97. else:
  98. self._sum += value * batch_size
  99. self._count += batch_size
  100. @property
  101. def average(self):
  102. if self._sum is None:
  103. return 0
  104. return ((self._sum / self._count).__float__()) if self._sum.dim() < 1 else tuple(
  105. (self._sum / self._count).cpu().numpy())
  106. # return (self._sum / self._count).__float__() if self._sum.dim() < 1 or len(self._sum) == 1 \
  107. # else tuple((self._sum / self._count).cpu().numpy())
  108. def tensor_container_to_device(obj: Union[torch.Tensor, tuple, list, dict], device: str, non_blocking=True):
  109. """
  110. recursively send compounded objects to device (sending all tensors to device and maintaining structure)
  111. :param obj the object to send to device (list / tuple / tensor / dict)
  112. :param device: device to send the tensors to
  113. :param non_blocking: used for DistributedDataParallel
  114. :returns an object with the same structure (tensors, lists, tuples) with the device pointers (like
  115. the return value of Tensor.to(device)
  116. """
  117. if isinstance(obj, torch.Tensor):
  118. return obj.to(device, non_blocking=non_blocking)
  119. elif isinstance(obj, tuple):
  120. return tuple(tensor_container_to_device(x, device, non_blocking=non_blocking) for x in obj)
  121. elif isinstance(obj, list):
  122. return [tensor_container_to_device(x, device, non_blocking=non_blocking) for x in obj]
  123. elif isinstance(obj, dict):
  124. return {k: tensor_container_to_device(v, device, non_blocking=non_blocking) for k, v in obj.items()}
  125. else:
  126. return obj
  127. def get_param(params, name, default_val=None):
  128. """
  129. Retrieves a param from a parameter object/dict. If the parameter does not exist, will return default_val.
  130. In case the default_val is of type dictionary, and a value is found in the params - the function
  131. will return the default value dictionary with internal values overridden by the found value
  132. i.e.
  133. default_opt_params = {'lr':0.1, 'momentum':0.99, 'alpha':0.001}
  134. training_params = {'optimizer_params': {'lr':0.0001}, 'batch': 32 .... }
  135. get_param(training_params, name='optimizer_params', default_val=default_opt_params)
  136. will return {'lr':0.0001, 'momentum':0.99, 'alpha':0.001}
  137. :param params: an object (typically HpmStruct) or a dict holding the params
  138. :param name: name of the searched parameter
  139. :param default_val: assumed to be the same type as the value searched in the params
  140. :return: the found value, or default if not found
  141. """
  142. if isinstance(params, dict):
  143. if name in params:
  144. if isinstance(default_val, dict):
  145. return {**default_val, **params[name]}
  146. else:
  147. return params[name]
  148. else:
  149. return default_val
  150. elif hasattr(params, name):
  151. if isinstance(default_val, dict):
  152. return {**default_val, **getattr(params, name)}
  153. else:
  154. return getattr(params, name)
  155. else:
  156. return default_val
  157. def static_vars(**kwargs):
  158. def decorate(func):
  159. for k in kwargs:
  160. setattr(func, k, kwargs[k])
  161. return func
  162. return decorate
  163. @static_vars(printed=set())
  164. def print_once(s: str):
  165. if s not in print_once.printed:
  166. print_once.printed.add(s)
  167. print(s)
  168. def move_state_dict_to_device(model_sd, device):
  169. """
  170. Moving model state dict tensors to target device (cuda or cpu)
  171. :param model_sd: model state dict
  172. :param device: either cuda or cpu
  173. """
  174. for k, v in model_sd.items():
  175. model_sd[k] = v.to(device)
  176. return model_sd
  177. def random_seed(is_ddp, device, seed):
  178. """
  179. Sets random seed of numpy, torch and random.
  180. When using ddp a seed will be set for each process according to its local rank derived from the device number.
  181. :param is_ddp: bool, will set different random seed for each process when using ddp.
  182. :param device: 'cuda','cpu', 'cuda:<device_number>'
  183. :param seed: int, random seed to be set
  184. """
  185. rank = 0 if not is_ddp else int(device.split(':')[1])
  186. torch.manual_seed(seed + rank)
  187. np.random.seed(seed + rank)
  188. random.seed(seed + rank)
  189. def load_func(dotpath: str):
  190. """
  191. load function in module. function is right-most segment.
  192. Used for passing functions (without calling them) in yaml files.
  193. @param dotpath: path to module.
  194. @return: a python function
  195. """
  196. module_, func = dotpath.rsplit(".", maxsplit=1)
  197. m = import_module(module_)
  198. return getattr(m, func)
  199. def get_filename_suffix_by_framework(framework: str):
  200. """
  201. Return the file extension of framework.
  202. @param framework: (str)
  203. @return: (str) the suffix for the specific framework
  204. """
  205. frameworks_dict = \
  206. {
  207. 'TENSORFLOW1': '.pb',
  208. 'TENSORFLOW2': '.zip',
  209. 'PYTORCH': '.pth',
  210. 'ONNX': '.onnx',
  211. 'TENSORRT': '.pkl',
  212. 'OPENVINO': '.pkl',
  213. 'TORCHSCRIPT': '.pth',
  214. 'TVM': '',
  215. 'KERAS': '.h5',
  216. 'TFLITE': '.tflite'
  217. }
  218. if framework.upper() not in frameworks_dict.keys():
  219. raise ValueError(f'Unsupported framework: {framework}')
  220. return frameworks_dict[framework.upper()]
  221. def check_models_have_same_weights(model_1: torch.nn.Module, model_2: torch.nn.Module):
  222. """
  223. Checks whether two networks have the same weights
  224. @param model_1: Net to be checked
  225. @param model_2: Net to be checked
  226. @return: True iff the two networks have the same weights
  227. """
  228. model_1, model_2 = model_1.to('cpu'), model_2.to('cpu')
  229. models_differ = 0
  230. for key_item_1, key_item_2 in zip(model_1.state_dict().items(), model_2.state_dict().items()):
  231. if torch.equal(key_item_1[1], key_item_2[1]):
  232. pass
  233. else:
  234. models_differ += 1
  235. if (key_item_1[0] == key_item_2[0]):
  236. print(f'Layer names match but layers have different weights for layers: {key_item_1[0]}')
  237. if models_differ == 0:
  238. return True
  239. else:
  240. return False
  241. def recursive_override(base: dict, extension: dict):
  242. for k, v in extension.items():
  243. if k in base:
  244. if isinstance(v, Mapping):
  245. recursive_override(base[k], extension[k])
  246. else:
  247. base[k] = extension[k]
  248. else:
  249. base[k] = extension[k]
  250. def download_and_unzip_from_url(url, dir='.', unzip=True, delete=True):
  251. """
  252. Downloads a zip file from url to dir, and unzips it.
  253. :param url: Url to download the file from.
  254. :param dir: Destination directory.
  255. :param unzip: Whether to unzip the downloaded file.
  256. :param delete: Whether to delete the zip file.
  257. used to downlaod VOC.
  258. Source:
  259. https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml
  260. """
  261. def download_one(url, dir):
  262. # Download 1 file
  263. f = dir / Path(url).name # filename
  264. if Path(url).is_file(): # exists in current path
  265. Path(url).rename(f) # move to dir
  266. elif not f.exists():
  267. print(f'Downloading {url} to {f}...')
  268. torch.hub.download_url_to_file(url, f, progress=True) # torch download
  269. if unzip and f.suffix in ('.zip', '.gz'):
  270. print(f'Unzipping {f}...')
  271. if f.suffix == '.zip':
  272. ZipFile(f).extractall(path=dir) # unzip
  273. elif f.suffix == '.gz':
  274. os.system(f'tar xfz {f} --directory {f.parent}') # unzip
  275. if delete:
  276. f.unlink() # remove zip
  277. dir = Path(dir)
  278. dir.mkdir(parents=True, exist_ok=True) # make directory
  279. for u in [url] if isinstance(url, (str, Path)) else url:
  280. download_one(u, dir)
  281. def download_and_untar_from_url(urls: List[str], dir: Union[str, Path] = '.'):
  282. """
  283. Download a file from url and untar.
  284. :param urls: Url to download the file from.
  285. :param dir: Destination directory.
  286. """
  287. dir = Path(dir)
  288. dir.mkdir(parents=True, exist_ok=True)
  289. for url in urls:
  290. url_path = Path(url)
  291. filepath = dir / url_path.name
  292. if url_path.is_file():
  293. url_path.rename(filepath)
  294. elif not filepath.exists():
  295. logger.info(f'Downloading {url} to {filepath}...')
  296. torch.hub.download_url_to_file(url, str(filepath), progress=True)
  297. modes = {".tar.gz": "r:gz", ".tar": "r:"}
  298. assert filepath.suffix in modes.keys(), f"{filepath} has {filepath.suffix} suffix which is not supported"
  299. logger.info(f'Extracting to {dir}...')
  300. with tarfile.open(filepath, mode=modes[filepath.suffix]) as f:
  301. f.extractall(dir)
  302. filepath.unlink()
  303. def make_divisible(x: int, divisor: int, ceil: bool = True) -> int:
  304. """
  305. Returns x evenly divisible by divisor.
  306. If ceil=True it will return the closest larger number to the original x, and ceil=False the closest smaller number.
  307. """
  308. if ceil:
  309. return math.ceil(x / divisor) * divisor
  310. else:
  311. return math.floor(x / divisor) * divisor
  312. def check_img_size_divisibility(img_size: int, stride: int = 32) -> Tuple[bool, Optional[Tuple[int, int]]]:
  313. """
  314. :param img_size: Int, the size of the image (H or W).
  315. :param stride: Int, the number to check if img_size is divisible by.
  316. :return: (True, None) if img_size is divisble by stride, (False, Suggestions) if it's not.
  317. Note: Suggestions are the two closest numbers to img_size that *are* divisible by stride.
  318. For example if img_size=321, stride=32, it will return (False,(352, 320)).
  319. """
  320. new_size = make_divisible(img_size, int(stride))
  321. if new_size != img_size:
  322. return False, (new_size, make_divisible(img_size, int(stride), ceil=False))
  323. else:
  324. return True, None
  325. @lru_cache(None)
  326. def get_orientation_key() -> int:
  327. """Get the orientation key according to PIL, which is useful to get the image size for instance
  328. :return: Orientation key according to PIL"""
  329. for key, value in ExifTags.TAGS.items():
  330. if value == 'Orientation':
  331. return key
  332. def exif_size(image: Image) -> Tuple[int, int]:
  333. """Get the size of image.
  334. :param image: The image to get size from
  335. :return: (height, width)
  336. """
  337. orientation_key = get_orientation_key()
  338. image_size = image.size
  339. try:
  340. exif_data = image._getexif()
  341. if exif_data is not None:
  342. rotation = dict(exif_data.items())[orientation_key]
  343. # ROTATION 270
  344. if rotation == 6:
  345. image_size = (image_size[1], image_size[0])
  346. # ROTATION 90
  347. elif rotation == 8:
  348. image_size = (image_size[1], image_size[0])
  349. except Exception as ex:
  350. print('Caught Exception trying to rotate: ' + str(image) + str(ex))
  351. width, height = image_size
  352. return height, width
  353. def get_image_size_from_path(img_path: str) -> Tuple[int, int]:
  354. """Get the image size of an image at a specific path"""
  355. with open(img_path, 'rb') as f:
  356. return exif_size(Image.open(f))
  357. def override_default_params_without_nones(params: Dict, default_params: Dict) -> Dict:
  358. """
  359. Helper method for overriding default dictionary's entries excluding entries with None values.
  360. :param params: dict, output dictionary which will take the defaults.
  361. :param default_params: dict, dictionary for the defaults.
  362. :return: dict, params after manipulation,
  363. """
  364. for key, val in default_params.items():
  365. if key not in params.keys() or params[key] is None:
  366. params[key] = val
  367. return params
Discard
Tip!

Press p or to see the previous file or, n or to see the next file