Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#378 Feature/sg 281 add kd notebook

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-281-add_kd_notebook
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  1. MODEL_URLS = {"regnetY800_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY800/average_model.pth",
  2. "regnetY600_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY600/average_model_regnety600.pth",
  3. "regnetY400_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY400/average_model_regnety400.pth",
  4. "regnetY200_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/RegnetY200/average_model_regnety200.pth",
  5. "resnet50_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/KD_ResNet50_Beit_Base_ImageNet/resnet.pth",
  6. "resnet34_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/resent_34/average_model.pth",
  7. "resnet18_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/resnet18/average_model.pth",
  8. "repvgg_a0_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/repvgg_a0_imagenet.pth",
  9. "shelfnet34_lw_coco_segmentation_subclass": "https://deci-pretrained-models.s3.amazonaws.com"
  10. "/shelfnet34_coco_segmentation_subclass.pth",
  11. "ddrnet_23_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ddrnet/cityscapes/ddrnet23/average_model.pth",
  12. "ddrnet_23_slim_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ddrnet/cityscapes/ddrnet23_slim/average_model.pth",
  13. "stdc1_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc1_seg50_dice_edge/ckpt_best.pth",
  14. "stdc1_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/stdc1_seg75_cityscapes/ckpt_best.pth",
  15. "stdc2_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc2_seg50_dice_edge/ckpt_best.pth",
  16. "stdc2_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/stdc2_seg75_cityscapes/ckpt_best.pth",
  17. "efficientnet_b0_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/efficientnet_b0/average_model-3.pth",
  18. "ssd_lite_mobilenet_v2_coco":
  19. "https://deci-pretrained-models.s3.amazonaws.com/"
  20. "ssd_lite_mobilenet_v2_coco_res320_new_coco_filtered_affine_scale_5_15_no_mosaic/ckpt_best.pth",
  21. "ssd_mobilenet_v1_coco": "https://deci-pretrained-models.s3.amazonaws.com/ssd_mobilenet_v1_coco_res320/ckpt_best.pth",
  22. "mobilenet_v3_large_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/mobilenetv3+large+300epoch/average_model.pth",
  23. "mobilenet_v3_small_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/mobilenetv3+small/ckpt_best.pth",
  24. "mobilenet_v2_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/mobilenetv2+w1/ckpt_best.pth",
  25. "regseg48_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/regseg48_cityscapes/ckpt_best.pth",
  26. "vit_base_imagenet21k": "https://deci-pretrained-models.s3.amazonaws.com/vit_pretrained_imagenet21k/vit_base_16_imagenet21K.pth",
  27. "vit_large_imagenet21k": "https://deci-pretrained-models.s3.amazonaws.com/vit_pretrained_imagenet21k/vit_large_16_imagenet21K.pth",
  28. "vit_base_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/vit_base_imagenet1k/ckpt_best.pth",
  29. "vit_large_imagenet": "https://deci-pretrained-models.s3.amazonaws.com/vit_large_cutmix_randaug_v2_lr%3D0.03/average_model.pth",
  30. "beit_base_patch16_224_imagenet": 'https://deci-pretrained-models.s3.amazonaws.com/beit_base_patch16_224_imagenet.pth',
  31. "beit_base_patch16_224_cifar10": 'https://deci-pretrained-models.s3.amazonaws.com/beit_cifar10.pth',
  32. "yolox_s_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_s_coco/average_model.pth",
  33. "yolox_m_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_m_coco/average_model.pth",
  34. "yolox_l_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_l_coco/average_model.pth",
  35. "yolox_t_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_tiny_coco/ckpt_best.pth",
  36. "yolox_n_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_n_coco/ckpt_best.pth",
  37. "pp_lite_t_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg50/average_model.pth",
  38. "pp_lite_t_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg75/average_model.pth",
  39. "pp_lite_b_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg50/average_model.pth",
  40. "pp_lite_b_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg75/average_model.pth",
  41. }
  42. PRETRAINED_NUM_CLASSES = {"imagenet": 1000,
  43. "imagenet21k": 21843,
  44. "coco_segmentation_subclass": 21,
  45. "cityscapes": 19,
  46. "coco": 80,
  47. "cifar10": 10}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file