1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
- import torch
- from torch import nn
- from torch.nn.modules.loss import _Loss
- from super_gradients.training.exceptions.loss_exceptions import IllegalRangeForLossAttributeException, RequiredLossComponentReductionException
- class OhemLoss(_Loss):
- """
- OhemLoss - Online Hard Example Mining Cross Entropy Loss
- """
- def __init__(self,
- threshold: float,
- mining_percent: float = 0.1,
- ignore_lb: int = -100,
- num_pixels_exclude_ignored: bool = True,
- criteria: _Loss = None):
- """
- :param threshold: Sample below probability threshold, is considered hard.
- :param num_pixels_exclude_ignored: How to calculate total pixels from which extract mining percent of the
- samples.
- :param ignore_lb: label index to be ignored in loss calculation.
- :param criteria: loss to mine the examples from.
- i.e for num_pixels=100, ignore_pixels=30, mining_percent=0.1:
- num_pixels_exclude_ignored=False => num_mining = 100 * 0.1 = 10
- num_pixels_exclude_ignored=True => num_mining = (100 - 30) * 0.1 = 7
- """
- super().__init__()
- if mining_percent < 0 or mining_percent > 1:
- raise IllegalRangeForLossAttributeException((0, 1), "mining percent")
- self.thresh = -torch.log(torch.tensor(threshold, dtype=torch.float))
- self.mining_percent = mining_percent
- self.ignore_lb = ignore_lb
- self.num_pixels_exclude_ignored = num_pixels_exclude_ignored
- if criteria.reduction != 'none':
- raise RequiredLossComponentReductionException("criteria", criteria.reduction, 'none')
- self.criteria = criteria
- def forward(self, logits, labels):
- loss = self.criteria(logits, labels).view(-1)
- if self.num_pixels_exclude_ignored:
- # remove ignore label elements
- loss = loss[labels.view(-1) != self.ignore_lb]
- # num pixels in a batch -> num_pixels = batch_size * width * height - ignore_pixels
- num_pixels = loss.numel()
- else:
- num_pixels = labels.numel()
- # if all pixels are ignore labels, return empty loss tensor
- if num_pixels == 0:
- return torch.tensor([0.]).requires_grad_(True)
- num_mining = int(self.mining_percent * num_pixels)
- # in case mining_percent=1, prevent out of bound exception
- num_mining = min(num_mining, num_pixels - 1)
- self.thresh = self.thresh.to(logits.device)
- loss, _ = torch.sort(loss, descending=True)
- if loss[num_mining] > self.thresh:
- loss = loss[loss > self.thresh]
- else:
- loss = loss[:num_mining]
- return torch.mean(loss)
- class OhemCELoss(OhemLoss):
- """
- OhemLoss - Online Hard Example Mining Cross Entropy Loss
- """
- def __init__(self,
- threshold: float,
- mining_percent: float = 0.1,
- ignore_lb: int = -100,
- num_pixels_exclude_ignored: bool = True):
- ignore_lb = -100 if ignore_lb is None or ignore_lb < 0 else ignore_lb
- criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none')
- super(OhemCELoss, self).__init__(threshold=threshold,
- mining_percent=mining_percent,
- ignore_lb=ignore_lb,
- num_pixels_exclude_ignored=num_pixels_exclude_ignored,
- criteria=criteria)
- class OhemBCELoss(OhemLoss):
- """
- OhemBCELoss - Online Hard Example Mining Binary Cross Entropy Loss
- """
- def __init__(self,
- threshold: float,
- mining_percent: float = 0.1,
- ignore_lb: int = -100,
- num_pixels_exclude_ignored: bool = True, ):
- super(OhemBCELoss, self).__init__(threshold=threshold,
- mining_percent=mining_percent,
- ignore_lb=ignore_lb,
- num_pixels_exclude_ignored=num_pixels_exclude_ignored,
- criteria=nn.BCEWithLogitsLoss(reduction='none'))
- def forward(self, logits, labels):
- # REMOVE SINGLE CLASS CHANNEL WHEN DEALING WITH BINARY DATA
- if logits.shape[1] == 1:
- logits = logits.squeeze(1)
- return super(OhemBCELoss, self).forward(logits, labels.float())
|