1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
- import torch
- from torch.nn.modules.loss import _Loss
- from super_gradients.training.losses.loss_utils import apply_reduce, LossReduction
- from typing import Union
- class MaskAttentionLoss(_Loss):
- """
- Pixel mask attention loss. For semantic segmentation usages with 4D tensors.
- """
- def __init__(self,
- criterion: _Loss,
- loss_weights: Union[list, tuple] = (1., 1.),
- reduction: Union[LossReduction, str] = "mean"):
- """
- :param criterion: _Loss object, loss function that apply per pixel cost penalty are supported, i.e
- CrossEntropyLoss, BCEWithLogitsLoss, MSELoss, SL1Loss.
- criterion reduction must be `none`.
- :param loss_weights: Weight to apply for each part of the loss contributions,
- [regular loss, masked loss] respectively.
- :param reduction: Specifies the reduction to apply to the output: `none` | `mean` | `sum`.
- `none`: no reduction will be applied.
- `mean`: the sum of the output will be divided by the number of elements in the output.
- `sum`: the output will be summed.
- Default: `mean`
- """
- super().__init__(reduction=reduction.value if isinstance(reduction, LossReduction) else reduction)
- # Check that the arguments are valid.
- if criterion.reduction != "none":
- raise ValueError(f"criterion reduction must be `none`, for computing the mask contribution loss values,"
- f" found reduction: {criterion.reduction}")
- if len(loss_weights) != 2:
- raise ValueError(f"loss_weights must have 2 values, found: {len(loss_weights)}")
- if loss_weights[1] <= 0:
- raise ValueError("If no loss weight is applied on mask samples, consider using simply criterion")
- self.criterion = criterion
- self.loss_weights = loss_weights
- def forward(self, predict: torch.Tensor, target: torch.Tensor, mask: torch.Tensor):
- criterion_loss = self.criterion(predict, target)
- mask = self._broadcast_mask(mask, criterion_loss.size())
- mask_loss = criterion_loss * mask
- if self.reduction == LossReduction.NONE.value:
- return criterion_loss * self.loss_weights[0] + mask_loss * self.loss_weights[1]
- mask_loss = mask_loss[mask == 1] # consider only mask samples for mask loss computing
- mask_loss = apply_reduce(mask_loss, self.reduction)
- criterion_loss = apply_reduce(criterion_loss, self.reduction)
- loss = criterion_loss * self.loss_weights[0] + mask_loss * self.loss_weights[1]
- return loss
- def _broadcast_mask(self, mask: torch.Tensor, size: torch.Size):
- """
- Broadcast the mask tensor before elementwise multiplication.
- """
- # Assert that batch size and spatial size are the same.
- if mask.size()[-2:] != size[-2:] or mask.size(0) != size[0]:
- raise AssertionError("Mask broadcast is allowed only in channels dimension, found shape mismatch between"
- f"mask shape: {mask.size()}, and target shape: {size}")
- # when mask is [B, 1, H, W] | [B, H, W] and size is [B, H, W]
- # or when mask is [B, 1, H, W] | [B, H, W] and size is [B, 1, H, W]
- if len(size) == 3 or (len(size) == 4 and size[1] == 1):
- mask = mask.view(*size)
- # when mask is [B, C, H, W] | [B, 1, H, W] | [B, H, W] and size is [B, C, H, W]
- else:
- mask = mask if len(mask.size()) == 4 else mask.unsqueeze(1)
- if mask.size(1) not in [1, size[1]]:
- raise AssertionError(f"Broadcast is not allowed, num mask channels must be 1 or same as target channels"
- f"mask shape: {mask.size()}, and target shape: {size}")
- mask = mask if mask.size() == size else mask.expand(*size)
- return mask
|