1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
- import torch
- import torch.nn as nn
- from super_gradients.training.losses.dice_loss import DiceLoss, BinaryDiceLoss
- from super_gradients.training.utils.segmentation_utils import target_to_binary_edge
- from torch.nn.modules.loss import _Loss
- from typing import Union, Tuple
- from super_gradients.training.losses.mask_loss import MaskAttentionLoss
- class DiceCEEdgeLoss(_Loss):
- def __init__(self,
- num_classes: int,
- num_aux_heads: int = 2,
- num_detail_heads: int = 1,
- weights: Union[tuple, list] = (1, 1, 1, 1),
- dice_ce_weights: Union[tuple, list] = (1, 1),
- ignore_index: int = -100,
- edge_kernel: int = 3,
- ce_edge_weights: Union[tuple, list] = (.5, .5)):
- """
- Total loss is computed as follows:
- Loss-cls-edge = λ1 * CE + λ2 * M * CE , where [λ1, λ2] are ce_edge_weights.
- For each Main feature maps and auxiliary heads the loss is calculated as:
- Loss-main-aux = λ3 * Loss-cls-edge + λ4 * Loss-Dice, where [λ3, λ4] are dice_ce_weights.
- For Feature maps defined as detail maps that predicts only the edge mask, the loss is computed as follow:
- Loss-detail = BinaryCE + BinaryDice
- Finally the total loss is computed as follows for the whole feature maps:
- Loss = Σw[i] * Loss-main-aux[i] + Σw[j] * Loss-detail[j], where `w` is defined as the `weights` argument
- `i` in [0, 1 + num_aux_heads], 1 is for the main feature map.
- `j` in [1 + num_aux_heads, 1 + num_aux_heads + num_detail_heads].
- :param num_aux_heads: num of auxiliary heads.
- :param num_detail_heads: num of detail heads.
- :param weights: Loss lambda weights.
- :param dice_ce_weights: weights lambdas between (Dice, CE) losses.
- :param edge_kernel: kernel size of dilation erosion convolutions for creating the edge feature map.
- :param ce_edge_weights: weights lambdas between regular CE and edge attention CE.
- """
- super().__init__()
- # Check that arguments are valid.
- assert len(weights) == num_aux_heads + num_detail_heads + 1,\
- "Lambda loss weights must be in same size as loss items."
- assert len(dice_ce_weights) == 2, f"dice_ce_weights must an iterable with size 2, found: {len(dice_ce_weights)}"
- assert len(ce_edge_weights) == 2, f"dice_ce_weights must an iterable with size 2, found: {len(ce_edge_weights)}"
- self.edge_kernel = edge_kernel
- self.num_classes = num_classes
- self.ignore_index = ignore_index
- self.weights = weights
- self.dice_ce_weights = dice_ce_weights
- self.use_detail = num_detail_heads > 0
- self.num_aux_heads = num_aux_heads
- self.num_detail_heads = num_detail_heads
- if self.use_detail:
- self.bce = nn.BCEWithLogitsLoss()
- self.binary_dice = BinaryDiceLoss(apply_sigmoid=True)
- self.ce_edge = MaskAttentionLoss(
- criterion=nn.CrossEntropyLoss(reduction="none", ignore_index=ignore_index),
- loss_weights=ce_edge_weights
- )
- self.dice_loss = DiceLoss(apply_softmax=True, ignore_index=ignore_index)
- def forward(self, preds: Tuple[torch.Tensor], target: torch.Tensor):
- """
- :param preds: Model output predictions, must be in the followed format:
- [Main-feats, Aux-feats[0], ..., Aux-feats[num_auxs-1], Detail-feats[0], ..., Detail-feats[num_details-1]
- """
- assert len(preds) == self.num_aux_heads + self.num_detail_heads + 1,\
- f"Wrong num of predictions tensors, expected {self.num_aux_heads + self.num_detail_heads + 1} found {len(preds)}"
- edge_target = target_to_binary_edge(target, num_classes=self.num_classes, kernel_size=self.edge_kernel,
- ignore_index=self.ignore_index, flatten_channels=True)
- losses = []
- total_loss = 0
- # Main and auxiliaries feature maps losses
- for i in range(0, 1 + self.num_aux_heads):
- ce_loss = self.ce_edge(preds[i], target, edge_target)
- dice_loss = self.dice_loss(preds[i], target)
- loss = ce_loss * self.dice_ce_weights[0] + dice_loss * self.dice_ce_weights[1]
- total_loss += self.weights[i] * loss
- losses.append(loss)
- # Detail feature maps losses
- if self.use_detail:
- for i in range(1 + self.num_aux_heads, len(preds)):
- bce_loss = self.bce(preds[i], edge_target)
- dice_loss = self.binary_dice(preds[i], edge_target)
- loss = bce_loss * self.dice_ce_weights[0] + dice_loss * self.dice_ce_weights[1]
- total_loss += self.weights[i] * loss
- losses.append(loss)
- losses.append(total_loss)
- return total_loss, torch.stack(losses, dim=0).detach()
|