Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#378 Feature/sg 281 add kd notebook

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-281-add_kd_notebook
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  1. # RegSeg segmentation training example with Cityscapes dataset.
  2. # Reproduction of paper: Rethink Dilated Convolution for Real-time Semantic Segmentation.
  3. #
  4. # Instructions:
  5. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  6. # 1. Move to the project root (where you will find the ReadMe and src folder)
  7. # 2. Run the command:
  8. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_regseg48
  9. #
  10. #
  11. # Validation mIoU - Cityscapes, training time:
  12. # RegSeg48: input-size: [1024, 2048] mIoU: 78.15 using 4 GeForce RTX 2080 Ti with DDP, ~2 minutes / epoch
  13. #
  14. # Official git repo:
  15. # https://github.com/RolandGao/RegSeg
  16. # Paper:
  17. # https://arxiv.org/pdf/2111.09957.pdf
  18. #
  19. #
  20. # Logs, tensorboards and network checkpoints:
  21. # s3://deci-pretrained-models/regseg48_cityscapes/
  22. #
  23. #
  24. # Learning rate and batch size parameters, using 4 GeForce RTX 2080 Ti with DDP:
  25. # RegSeg48: input-size: [1024, 2048] initial_lr: 0.02 batch-size: 4 * 4gpus = 16
  26. defaults:
  27. - training_hyperparams: default_train_params
  28. - dataset_params: cityscapes_regseg48_dataset_params
  29. - checkpoint_params: default_checkpoint_params
  30. - _self_
  31. train_dataloader: cityscapes_train
  32. val_dataloader: cityscapes_val
  33. cityscapes_ignored_label: 19 # convenience parameter since it is used in many places in the YAML
  34. architecture: regseg48
  35. arch_params:
  36. num_classes: 19
  37. sync_bn: True
  38. strict_load: no_key_matching
  39. load_checkpoint: False
  40. model_checkpoints_location: local
  41. ckpt_root_dir:
  42. resume: False
  43. training_hyperparams:
  44. resume: ${resume}
  45. max_epochs: 800
  46. lr_mode: poly
  47. initial_lr: 0.02 # for effective batch_size=16
  48. lr_warmup_epochs: 0
  49. optimizer: SGD
  50. optimizer_params:
  51. momentum: 0.9
  52. weight_decay: 5e-4
  53. ema: True
  54. loss: cross_entropy
  55. criterion_params:
  56. ignore_index: ${cityscapes_ignored_label}
  57. train_metrics_list:
  58. - PixelAccuracy:
  59. ignore_label: ${cityscapes_ignored_label}
  60. - IoU:
  61. num_classes: 20
  62. ignore_index: ${cityscapes_ignored_label}
  63. valid_metrics_list:
  64. - PixelAccuracy:
  65. ignore_label: ${cityscapes_ignored_label}
  66. - IoU:
  67. num_classes: 20
  68. ignore_index: ${cityscapes_ignored_label}
  69. metric_to_watch: IoU
  70. greater_metric_to_watch_is_better: True
  71. _convert_: all
  72. project_name: RegSeg
  73. experiment_name: ${architecture}_cityscapes
  74. multi_gpu: AUTO
  75. num_gpus: 4
  76. hydra:
  77. searchpath:
  78. - pkg://super_gradients.recipes
  79. run:
  80. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file