1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
- """
- TODO: REFACTOR AS YAML FILES RECIPE
- Train DDRNet23 backbone in ImageNet according to the paper
- Training backbone on imagenet:
- python -m torch.distributed.launch --nproc_per_node=4 ddrnet_segmentation_example.py [-s for slim]
- [-d $n for decinet_$n backbone] --train_imagenet
- Official git repo: https://github.com/ydhongHIT/DDRNet
- Paper: https://arxiv.org/pdf/2101.06085.pdf
- """
- import torch
- from super_gradients.common import MultiGPUMode
- from super_gradients.training.datasets.datasets_utils import RandomResizedCropAndInterpolation
- from torchvision.transforms import RandomHorizontalFlip, ColorJitter, ToTensor, Normalize
- import super_gradients
- from super_gradients.training import Trainer, models, dataloaders
- import argparse
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.datasets.data_augmentation import RandomErase
- parser = argparse.ArgumentParser()
- super_gradients.init_trainer()
- parser.add_argument("--reload", action="store_true")
- parser.add_argument("--max_epochs", type=int, default=100)
- parser.add_argument("--batch", type=int, default=3)
- parser.add_argument("--experiment_name", type=str, default="ddrnet_23")
- parser.add_argument("-s", "--slim", action="store_true", help='train the slim version of DDRNet23')
- args, _ = parser.parse_known_args()
- distributed = super_gradients.is_distributed()
- devices = torch.cuda.device_count() if not distributed else 1
- train_params_ddr = {"max_epochs": args.max_epochs,
- "lr_mode": "step",
- "lr_updates": [30, 60, 90],
- "lr_decay_factor": 0.1,
- "initial_lr": 0.1 * devices,
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 0.0001, "momentum": 0.9, "nesterov": True},
- "loss": "cross_entropy",
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True
- }
- dataset_params = {"batch_size": args.batch,
- "color_jitter": 0.4,
- "random_erase_prob": 0.2,
- "random_erase_value": 'random',
- "train_interpolation": 'random',
- }
- train_transforms = [RandomResizedCropAndInterpolation(size=224, interpolation="random"),
- RandomHorizontalFlip(),
- ColorJitter(0.4, 0.4, 0.4),
- ToTensor(),
- Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
- RandomErase(0.2, "random")
- ]
- trainer = Trainer(experiment_name=args.experiment_name,
- multi_gpu=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL if distributed else MultiGPUMode.DATA_PARALLEL,
- device='cuda')
- train_loader = dataloaders.imagenet_train(dataset_params={"transforms": train_transforms},
- dataloader_params={"batch_size": args.batch})
- valid_loader = dataloaders.imagenet_val()
- model = models.get("ddrnet_23_slim" if args.slim else "ddrnet_23",
- arch_params={"aux_head": False, "classification_mode": True, 'dropout_prob': 0.3},
- num_classes=1000)
- trainer.train(model=model, training_params=train_params_ddr, train_loader=train_loader, valid_loader=valid_loader)
|