Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#378 Feature/sg 281 add kd notebook

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-281-add_kd_notebook
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  1. """
  2. TODO: REFACTOR AS YAML FILES RECIPE
  3. Train DDRNet23 backbone in ImageNet according to the paper
  4. Training backbone on imagenet:
  5. python -m torch.distributed.launch --nproc_per_node=4 ddrnet_segmentation_example.py [-s for slim]
  6. [-d $n for decinet_$n backbone] --train_imagenet
  7. Official git repo: https://github.com/ydhongHIT/DDRNet
  8. Paper: https://arxiv.org/pdf/2101.06085.pdf
  9. """
  10. import torch
  11. from super_gradients.common import MultiGPUMode
  12. from super_gradients.training.datasets.datasets_utils import RandomResizedCropAndInterpolation
  13. from torchvision.transforms import RandomHorizontalFlip, ColorJitter, ToTensor, Normalize
  14. import super_gradients
  15. from super_gradients.training import Trainer, models, dataloaders
  16. import argparse
  17. from super_gradients.training.metrics import Accuracy, Top5
  18. from super_gradients.training.datasets.data_augmentation import RandomErase
  19. parser = argparse.ArgumentParser()
  20. super_gradients.init_trainer()
  21. parser.add_argument("--reload", action="store_true")
  22. parser.add_argument("--max_epochs", type=int, default=100)
  23. parser.add_argument("--batch", type=int, default=3)
  24. parser.add_argument("--experiment_name", type=str, default="ddrnet_23")
  25. parser.add_argument("-s", "--slim", action="store_true", help='train the slim version of DDRNet23')
  26. args, _ = parser.parse_known_args()
  27. distributed = super_gradients.is_distributed()
  28. devices = torch.cuda.device_count() if not distributed else 1
  29. train_params_ddr = {"max_epochs": args.max_epochs,
  30. "lr_mode": "step",
  31. "lr_updates": [30, 60, 90],
  32. "lr_decay_factor": 0.1,
  33. "initial_lr": 0.1 * devices,
  34. "optimizer": "SGD",
  35. "optimizer_params": {"weight_decay": 0.0001, "momentum": 0.9, "nesterov": True},
  36. "loss": "cross_entropy",
  37. "train_metrics_list": [Accuracy(), Top5()],
  38. "valid_metrics_list": [Accuracy(), Top5()],
  39. "loss_logging_items_names": ["Loss"],
  40. "metric_to_watch": "Accuracy",
  41. "greater_metric_to_watch_is_better": True
  42. }
  43. dataset_params = {"batch_size": args.batch,
  44. "color_jitter": 0.4,
  45. "random_erase_prob": 0.2,
  46. "random_erase_value": 'random',
  47. "train_interpolation": 'random',
  48. }
  49. train_transforms = [RandomResizedCropAndInterpolation(size=224, interpolation="random"),
  50. RandomHorizontalFlip(),
  51. ColorJitter(0.4, 0.4, 0.4),
  52. ToTensor(),
  53. Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
  54. RandomErase(0.2, "random")
  55. ]
  56. trainer = Trainer(experiment_name=args.experiment_name,
  57. multi_gpu=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL if distributed else MultiGPUMode.DATA_PARALLEL,
  58. device='cuda')
  59. train_loader = dataloaders.imagenet_train(dataset_params={"transforms": train_transforms},
  60. dataloader_params={"batch_size": args.batch})
  61. valid_loader = dataloaders.imagenet_val()
  62. model = models.get("ddrnet_23_slim" if args.slim else "ddrnet_23",
  63. arch_params={"aux_head": False, "classification_mode": True, 'dropout_prob': 0.3},
  64. num_classes=1000)
  65. trainer.train(model=model, training_params=train_params_ddr, train_loader=train_loader, valid_loader=valid_loader)
Discard
Tip!

Press p or to see the previous file or, n or to see the next file