1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.metrics package — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
- <script src="_static/jquery.js"></script>
- <script src="_static/underscore.js"></script>
- <script src="_static/doctools.js"></script>
- <script src="_static/js/theme.js"></script>
- <link rel="index" title="Index" href="genindex.html" />
- <link rel="search" title="Search" href="search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="welcome.html">Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -> Fill Survey</a></li>
- <li class="toctree-l1"><a class="reference internal" href="welcome.html#supergradients">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#professional-tools-integration">Professional Tools Integration</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="index.html" class="icon icon-home"></a> »</li>
- <li>super_gradients.training.metrics package</li>
- <li class="wy-breadcrumbs-aside">
- <a href="_sources/super_gradients.training.metrics.rst.txt" rel="nofollow"> View page source</a>
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <section id="super-gradients-training-metrics-package">
- <h1>super_gradients.training.metrics package<a class="headerlink" href="#super-gradients-training-metrics-package" title="Permalink to this headline"></a></h1>
- <section id="submodules">
- <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
- </section>
- <section id="module-super_gradients.training.metrics.classification_metrics">
- <span id="super-gradients-training-metrics-classification-metrics-module"></span><h2>super_gradients.training.metrics.classification_metrics module<a class="headerlink" href="#module-super_gradients.training.metrics.classification_metrics" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.accuracy">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">topk</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">(1)</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Computes the precision@k for the specified values of k
- :param output: Tensor / Numpy / List</p>
- <blockquote>
- <div><p>The prediction</p>
- </div></blockquote>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>target</strong> – Tensor / Numpy / List
- The corresponding lables</p></li>
- <li><p><strong>topk</strong> – tuple
- The type of accuracy to calculate, e.g. topk=(1,5) returns accuracy for top-1 and top-5</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">Accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.accuracy.Accuracy</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Accuracy.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets. See
- <span class="xref std std-ref">pages/classification:input types</span> for more information on input
- types.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model (logits, probabilities, or labels)</p></li>
- <li><p><strong>target</strong> – Ground truth labels</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.correct">
- <span class="sig-name descname"><span class="pre">correct</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.correct" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.total">
- <span class="sig-name descname"><span class="pre">total</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.total" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.mode">
- <span class="sig-name descname"><span class="pre">mode</span></span><em class="property"><span class="pre">:</span> <span class="pre">DataType</span></em><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.mode" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Accuracy.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Accuracy.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Top5">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">Top5</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Top5" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Top5.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Top5.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.Top5.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.Top5.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.classification_metrics.</span></span><span class="sig-name descname"><span class="pre">ToyTestClassificationMetric</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <p>Dummy classification Mettric object returning 0 always (for testing).</p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span> → <span class="pre">None</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.classification_metrics.ToyTestClassificationMetric.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics.detection_metrics">
- <span id="super-gradients-training-metrics-detection-metrics-module"></span><h2>super_gradients.training.metrics.detection_metrics module<a class="headerlink" href="#module-super_gradients.training.metrics.detection_metrics" title="Permalink to this headline"></a></h2>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.detection_metrics.</span></span><span class="sig-name descname"><span class="pre">DetectionMetrics</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">num_cls:</span> <span class="pre">int</span></em>, <em class="sig-param"><span class="pre">post_prediction_callback:</span> <span class="pre">Optional[super_gradients.training.utils.detection_utils.DetectionPostPredictionCallback]</span> <span class="pre">=</span> <span class="pre">None</span></em>, <em class="sig-param"><span class="pre">normalize_targets:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></em>, <em class="sig-param"><span class="pre">iou_thres:</span> <span class="pre">super_gradients.training.utils.detection_utils.IouThreshold</span> <span class="pre">=</span> <span class="pre"><IouThreshold.MAP_05_TO_095:</span> <span class="pre">(0.5</span></em>, <em class="sig-param"><span class="pre">0.95)></span></em>, <em class="sig-param"><span class="pre">recall_thres:</span> <span class="pre">Optional[torch.Tensor]</span> <span class="pre">=</span> <span class="pre">None</span></em>, <em class="sig-param"><span class="pre">score_thres:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">0.1</span></em>, <em class="sig-param"><span class="pre">top_k_predictions:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">100</span></em>, <em class="sig-param"><span class="pre">dist_sync_on_step:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></em>, <em class="sig-param"><span class="pre">accumulate_on_cpu:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">True</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <p>Metric class for computing F1, Precision, Recall and Mean Average Precision.</p>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.num_cls">
- <span class="sig-name descname"><span class="pre">num_cls</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.num_cls" title="Permalink to this definition"></a></dt>
- <dd><p>Number of classes.</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.post_prediction_callback">
- <span class="sig-name descname"><span class="pre">post_prediction_callback</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.post_prediction_callback" title="Permalink to this definition"></a></dt>
- <dd><p>DetectionPostPredictionCallback to be applied on net’s output prior
- to the metric computation (NMS).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.normalize_targets">
- <span class="sig-name descname"><span class="pre">normalize_targets</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.normalize_targets" title="Permalink to this definition"></a></dt>
- <dd><p>Whether to normalize bbox coordinates by image size (default=False).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.iou_thresholds">
- <span class="sig-name descname"><span class="pre">iou_thresholds</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.iou_thresholds" title="Permalink to this definition"></a></dt>
- <dd><p>IoU threshold to compute the mAP (default=torch.linspace(0.5, 0.95, 10)).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.recall_thresholds">
- <span class="sig-name descname"><span class="pre">recall_thresholds</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.recall_thresholds" title="Permalink to this definition"></a></dt>
- <dd><p>Recall threshold to compute the mAP (default=torch.linspace(0, 1, 101)).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.score_threshold">
- <span class="sig-name descname"><span class="pre">score_threshold</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.score_threshold" title="Permalink to this definition"></a></dt>
- <dd><p>Score threshold to compute Recall, Precision and F1 (default=0.1)</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.top_k_predictions">
- <span class="sig-name descname"><span class="pre">top_k_predictions</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.top_k_predictions" title="Permalink to this definition"></a></dt>
- <dd><p>Number of predictions per class used to compute metrics, ordered by confidence score
- (default=100)</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.dist_sync_on_step">
- <span class="sig-name descname"><span class="pre">dist_sync_on_step</span></span><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.dist_sync_on_step" title="Permalink to this definition"></a></dt>
- <dd><p>Synchronize metric state across processes at each <code class="docutils literal notranslate"><span class="pre">forward()</span></code>
- before returning the value at the step. (default=False)</p>
- <blockquote>
- <div><dl class="simple">
- <dt>accumulate_on_cpu: Run on CPU regardless of device used in other parts.</dt><dd><p>This is to avoid “CUDA out of memory” that might happen on GPU (default False)</p>
- </dd>
- </dl>
- </div></blockquote>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch._VariableFunctionsClass.tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">crowd_targets</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.update" title="Permalink to this definition"></a></dt>
- <dd><p>Apply NMS and match all the predictions and targets of a given batch, and update the metric state accordingly.</p>
- <dl class="simple">
- <dt>:param preds<span class="classifier">Raw output of the model, the format might change from one model to another, but has to fit</span></dt><dd><p>the input format of the post_prediction_callback</p>
- </dd>
- </dl>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>target</strong> – Targets for all images of shape (total_num_targets, 6)
- format: (index, x, y, w, h, label) where x,y,w,h are in range [0,1]</p></li>
- <li><p><strong>device</strong> – Device to run on</p></li>
- <li><p><strong>inputs</strong> – Input image tensor of shape (batch_size, n_img, height, width)</p></li>
- <li><p><strong>crowd_targets</strong> – Crowd targets for all images of shape (total_num_targets, 6)
- format: (index, x, y, w, h, label) where x,y,w,h are in range [0,1]</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.detection_metrics.DetectionMetrics.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> → <span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.detection_metrics.DetectionMetrics.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Compute the metrics for all the accumulated results.
- :return: Metrics of interest</p>
- </dd></dl>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics.metric_utils">
- <span id="super-gradients-training-metrics-metric-utils-module"></span><h2>super_gradients.training.metrics.metric_utils module<a class="headerlink" href="#module-super_gradients.training.metrics.metric_utils" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_logging_values">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_logging_values</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">loss_loggings</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="super_gradients.training.utils.html#super_gradients.training.utils.utils.AverageMeter" title="super_gradients.training.utils.utils.AverageMeter"><span class="pre">super_gradients.training.utils.utils.AverageMeter</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchmetrics.collections.MetricCollection</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">criterion</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_logging_values"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_logging_values" title="Permalink to this definition"></a></dt>
- <dd><p>@param loss_loggings: AverageMeter running average for the loss items
- @param metrics: MetricCollection object for running user specified metrics
- @param criterion the object loss_loggings average meter is monitoring, when set to None- only the metrics values are
- computed and returned.</p>
- <p>@return: tuple of the computed values</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_metrics_titles">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_metrics_titles</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchmetrics.collections.MetricCollection</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_metrics_titles"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_metrics_titles" title="Permalink to this definition"></a></dt>
- <dd><p>@param metrics_collection: MetricCollection object for running user specified metrics
- @return: list of all the names of the computed values list(str)</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_metrics_results_tuple">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_metrics_results_tuple</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torchmetrics.collections.MetricCollection</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_metrics_results_tuple"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_metrics_results_tuple" title="Permalink to this definition"></a></dt>
- <dd><p>@param metrics_collection: metrics collection of the user specified metrics
- @type metrics_collection
- @return: tuple of metrics values</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.flatten_metrics_dict">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">flatten_metrics_dict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_dict</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">dict</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#flatten_metrics_dict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.flatten_metrics_dict" title="Permalink to this definition"></a></dt>
- <dd><p>:param metrics_dict - dictionary of metric values where values can also be dictionaries containing subvalues
- (in the case of compound metrics)</p>
- <p>@return: flattened dict of metric values i.e {metric1_name: metric1_value…}</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_metrics_dict">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_metrics_dict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_tuple</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss_logging_item_names</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_metrics_dict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_metrics_dict" title="Permalink to this definition"></a></dt>
- <dd><p>Returns a dictionary with the epoch results as values and their names as keys.
- @param metrics_tuple: the result tuple
- @param metrics_collection: MetricsCollection
- @param loss_logging_item_names: loss component’s names.
- @return: dict</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.metric_utils.get_train_loop_description_dict">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.metric_utils.</span></span><span class="sig-name descname"><span class="pre">get_train_loop_description_dict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">metrics_tuple</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_collection</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss_logging_item_names</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">log_items</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/metric_utils.html#get_train_loop_description_dict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.metric_utils.get_train_loop_description_dict" title="Permalink to this definition"></a></dt>
- <dd><dl class="simple">
- <dt>Returns a dictionary with the epoch’s logging items as values and their names as keys, with the purpose of</dt><dd><p>passing it as a description to tqdm’s progress bar.</p>
- </dd>
- </dl>
- <p>@param metrics_tuple: the result tuple
- @param metrics_collection: MetricsCollection
- @param loss_logging_item_names: loss component’s names.
- @param log_items additional logging items to be rendered.
- @return: dict</p>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics.segmentation_metrics">
- <span id="super-gradients-training-metrics-segmentation-metrics-module"></span><h2>super_gradients.training.metrics.segmentation_metrics module<a class="headerlink" href="#module-super_gradients.training.metrics.segmentation_metrics" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.batch_pix_accuracy">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">batch_pix_accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">predict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#batch_pix_accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.batch_pix_accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Batch Pixel Accuracy
- :param predict: input 4D tensor
- :param target: label 3D tensor</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.batch_intersection_union">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">batch_intersection_union</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">predict</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nclass</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#batch_intersection_union"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.batch_intersection_union" title="Permalink to this definition"></a></dt>
- <dd><p>Batch Intersection of Union
- :param predict: input 4D tensor
- :param target: label 3D tensor
- :param nclass: number of categories (int)</p>
- </dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.pixel_accuracy">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">pixel_accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">im_pred</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">im_lab</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#pixel_accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.pixel_accuracy" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.intersection_and_union">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">intersection_and_union</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">im_pred</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">im_lab</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">num_class</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#intersection_and_union"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.intersection_and_union" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">AbstractMetricsArgsPrepFn</span></span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#AbstractMetricsArgsPrepFn"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">abc.ABC</span></code></p>
- <p>Abstract preprocess metrics arguments class.</p>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.PreprocessSegmentationMetricsArgs">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">PreprocessSegmentationMetricsArgs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">apply_arg_max</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">apply_sigmoid</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PreprocessSegmentationMetricsArgs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.PreprocessSegmentationMetricsArgs" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></code></a></p>
- <p>Default segmentation inputs preprocess function before updating segmentation metrics, handles multiple inputs and
- apply normalizations.</p>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.PixelAccuracy">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">PixelAccuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ignore_label</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">-</span> <span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.PixelAccuracy.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.IoU">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">IoU</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">num_classes</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reduction</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'elementwise_mean'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#IoU"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.IoU" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.jaccard.JaccardIndex</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.IoU.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#IoU.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.IoU.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model</p></li>
- <li><p><strong>target</strong> – Ground truth values</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.IoU.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.IoU.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.IoU.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.IoU.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.Dice">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">Dice</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">num_classes</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reduction</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'elementwise_mean'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#Dice"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.Dice" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.jaccard.JaccardIndex</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.Dice.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#Dice.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.Dice.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model</p></li>
- <li><p><strong>target</strong> – Ground truth values</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.Dice.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> → <span class="pre">torch.Tensor</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#Dice.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.Dice.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Computes Dice coefficient</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.Dice.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.Dice.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.Dice.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.Dice.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryIOU">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">BinaryIOU</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryIOU"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryIOU" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.IoU" title="super_gradients.training.metrics.segmentation_metrics.IoU"><code class="xref py py-class docutils literal notranslate"><span class="pre">super_gradients.training.metrics.segmentation_metrics.IoU</span></code></a></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryIOU.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryIOU.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryIOU.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Computes intersection over union (IoU)</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryIOU.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryIOU.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryIOU.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryIOU.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryDice">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.segmentation_metrics.</span></span><span class="sig-name descname"><span class="pre">BinaryDice</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryDice"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryDice" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.Dice" title="super_gradients.training.metrics.segmentation_metrics.Dice"><code class="xref py py-class docutils literal notranslate"><span class="pre">super_gradients.training.metrics.segmentation_metrics.Dice</span></code></a></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryDice.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryDice.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryDice.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Computes Dice coefficient</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryDice.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryDice.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.segmentation_metrics.BinaryDice.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.segmentation_metrics.BinaryDice.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- </section>
- <section id="module-super_gradients.training.metrics">
- <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-super_gradients.training.metrics" title="Permalink to this headline"></a></h2>
- <dl class="py function">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.accuracy">
- <span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">topk</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">(1)</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Computes the precision@k for the specified values of k
- :param output: Tensor / Numpy / List</p>
- <blockquote>
- <div><p>The prediction</p>
- </div></blockquote>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>target</strong> – Tensor / Numpy / List
- The corresponding lables</p></li>
- <li><p><strong>topk</strong> – tuple
- The type of accuracy to calculate, e.g. topk=(1,5) returns accuracy for top-1 and top-5</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Accuracy">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">Accuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Accuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Accuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.accuracy.Accuracy</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Accuracy.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Accuracy.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Accuracy.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets. See
- <span class="xref std std-ref">pages/classification:input types</span> for more information on input
- types.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model (logits, probabilities, or labels)</p></li>
- <li><p><strong>target</strong> – Ground truth labels</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Accuracy.correct">
- <span class="sig-name descname"><span class="pre">correct</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.Accuracy.correct" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Accuracy.total">
- <span class="sig-name descname"><span class="pre">total</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.Accuracy.total" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Accuracy.mode">
- <span class="sig-name descname"><span class="pre">mode</span></span><em class="property"><span class="pre">:</span> <span class="pre">DataType</span></em><a class="headerlink" href="#super_gradients.training.metrics.Accuracy.mode" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Accuracy.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.Accuracy.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Top5">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">Top5</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Top5" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Top5.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Top5.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Top5.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#Top5.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Top5.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.ToyTestClassificationMetric">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">ToyTestClassificationMetric</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.ToyTestClassificationMetric" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <p>Dummy classification Mettric object returning 0 always (for testing).</p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.ToyTestClassificationMetric.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span> → <span class="pre">None</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.ToyTestClassificationMetric.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.ToyTestClassificationMetric.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/classification_metrics.html#ToyTestClassificationMetric.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.ToyTestClassificationMetric.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">DetectionMetrics</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="pre">num_cls:</span> <span class="pre">int</span></em>, <em class="sig-param"><span class="pre">post_prediction_callback:</span> <span class="pre">Optional[super_gradients.training.utils.detection_utils.DetectionPostPredictionCallback]</span> <span class="pre">=</span> <span class="pre">None</span></em>, <em class="sig-param"><span class="pre">normalize_targets:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></em>, <em class="sig-param"><span class="pre">iou_thres:</span> <span class="pre">super_gradients.training.utils.detection_utils.IouThreshold</span> <span class="pre">=</span> <span class="pre"><IouThreshold.MAP_05_TO_095:</span> <span class="pre">(0.5</span></em>, <em class="sig-param"><span class="pre">0.95)></span></em>, <em class="sig-param"><span class="pre">recall_thres:</span> <span class="pre">Optional[torch.Tensor]</span> <span class="pre">=</span> <span class="pre">None</span></em>, <em class="sig-param"><span class="pre">score_thres:</span> <span class="pre">float</span> <span class="pre">=</span> <span class="pre">0.1</span></em>, <em class="sig-param"><span class="pre">top_k_predictions:</span> <span class="pre">int</span> <span class="pre">=</span> <span class="pre">100</span></em>, <em class="sig-param"><span class="pre">dist_sync_on_step:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">False</span></em>, <em class="sig-param"><span class="pre">accumulate_on_cpu:</span> <span class="pre">bool</span> <span class="pre">=</span> <span class="pre">True</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <p>Metric class for computing F1, Precision, Recall and Mean Average Precision.</p>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.num_cls">
- <span class="sig-name descname"><span class="pre">num_cls</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.num_cls" title="Permalink to this definition"></a></dt>
- <dd><p>Number of classes.</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.post_prediction_callback">
- <span class="sig-name descname"><span class="pre">post_prediction_callback</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.post_prediction_callback" title="Permalink to this definition"></a></dt>
- <dd><p>DetectionPostPredictionCallback to be applied on net’s output prior
- to the metric computation (NMS).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.normalize_targets">
- <span class="sig-name descname"><span class="pre">normalize_targets</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.normalize_targets" title="Permalink to this definition"></a></dt>
- <dd><p>Whether to normalize bbox coordinates by image size (default=False).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.iou_thresholds">
- <span class="sig-name descname"><span class="pre">iou_thresholds</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.iou_thresholds" title="Permalink to this definition"></a></dt>
- <dd><p>IoU threshold to compute the mAP (default=torch.linspace(0.5, 0.95, 10)).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.recall_thresholds">
- <span class="sig-name descname"><span class="pre">recall_thresholds</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.recall_thresholds" title="Permalink to this definition"></a></dt>
- <dd><p>Recall threshold to compute the mAP (default=torch.linspace(0, 1, 101)).</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.score_threshold">
- <span class="sig-name descname"><span class="pre">score_threshold</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.score_threshold" title="Permalink to this definition"></a></dt>
- <dd><p>Score threshold to compute Recall, Precision and F1 (default=0.1)</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.top_k_predictions">
- <span class="sig-name descname"><span class="pre">top_k_predictions</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.top_k_predictions" title="Permalink to this definition"></a></dt>
- <dd><p>Number of predictions per class used to compute metrics, ordered by confidence score
- (default=100)</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.dist_sync_on_step">
- <span class="sig-name descname"><span class="pre">dist_sync_on_step</span></span><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.dist_sync_on_step" title="Permalink to this definition"></a></dt>
- <dd><p>Synchronize metric state across processes at each <code class="docutils literal notranslate"><span class="pre">forward()</span></code>
- before returning the value at the step. (default=False)</p>
- <blockquote>
- <div><dl class="simple">
- <dt>accumulate_on_cpu: Run on CPU regardless of device used in other parts.</dt><dd><p>This is to avoid “CUDA out of memory” that might happen on GPU (default False)</p>
- </dd>
- </dl>
- </div></blockquote>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">inputs</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch._VariableFunctionsClass.tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">crowd_targets</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.update" title="Permalink to this definition"></a></dt>
- <dd><p>Apply NMS and match all the predictions and targets of a given batch, and update the metric state accordingly.</p>
- <dl class="simple">
- <dt>:param preds<span class="classifier">Raw output of the model, the format might change from one model to another, but has to fit</span></dt><dd><p>the input format of the post_prediction_callback</p>
- </dd>
- </dl>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>target</strong> – Targets for all images of shape (total_num_targets, 6)
- format: (index, x, y, w, h, label) where x,y,w,h are in range [0,1]</p></li>
- <li><p><strong>device</strong> – Device to run on</p></li>
- <li><p><strong>inputs</strong> – Input image tensor of shape (batch_size, n_img, height, width)</p></li>
- <li><p><strong>crowd_targets</strong> – Crowd targets for all images of shape (total_num_targets, 6)
- format: (index, x, y, w, h, label) where x,y,w,h are in range [0,1]</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.DetectionMetrics.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> → <span class="pre">Dict</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">,</span> </span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><span class="pre">torch.Tensor</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span><a class="reference internal" href="_modules/super_gradients/training/metrics/detection_metrics.html#DetectionMetrics.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.DetectionMetrics.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Compute the metrics for all the accumulated results.
- :return: Metrics of interest</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.PreprocessSegmentationMetricsArgs">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">PreprocessSegmentationMetricsArgs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">apply_arg_max</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">apply_sigmoid</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PreprocessSegmentationMetricsArgs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.PreprocessSegmentationMetricsArgs" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><code class="xref py py-class docutils literal notranslate"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></code></a></p>
- <p>Default segmentation inputs preprocess function before updating segmentation metrics, handles multiple inputs and
- apply normalizations.</p>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.PixelAccuracy">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">PixelAccuracy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ignore_label</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">-</span> <span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.PixelAccuracy" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.metric.Metric</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.PixelAccuracy.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.PixelAccuracy.update" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to update the state variables of your metric class.</p>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.PixelAccuracy.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#PixelAccuracy.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.PixelAccuracy.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Override this method to compute the final metric value from state variables synchronized across the
- distributed backend.</p>
- </dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.IoU">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">IoU</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">num_classes</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reduction</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'elementwise_mean'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#IoU"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.IoU" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.jaccard.JaccardIndex</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.IoU.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#IoU.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.IoU.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model</p></li>
- <li><p><strong>target</strong> – Ground truth values</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.IoU.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.IoU.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.IoU.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.IoU.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Dice">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">Dice</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">num_classes</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">reduction</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'elementwise_mean'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#Dice"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Dice" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torchmetrics.classification.jaccard.JaccardIndex</span></code></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Dice.update">
- <span class="sig-name descname"><span class="pre">update</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">preds</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">torch.Tensor</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#Dice.update"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Dice.update" title="Permalink to this definition"></a></dt>
- <dd><p>Update state with predictions and targets.</p>
- <dl class="field-list simple">
- <dt class="field-odd">Parameters</dt>
- <dd class="field-odd"><ul class="simple">
- <li><p><strong>preds</strong> – Predictions from model</p></li>
- <li><p><strong>target</strong> – Ground truth values</p></li>
- </ul>
- </dd>
- </dl>
- </dd></dl>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Dice.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span> → <span class="pre">torch.Tensor</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#Dice.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.Dice.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Computes Dice coefficient</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Dice.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.Dice.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.Dice.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.Dice.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryIOU">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">BinaryIOU</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryIOU"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.BinaryIOU" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.IoU" title="super_gradients.training.metrics.segmentation_metrics.IoU"><code class="xref py py-class docutils literal notranslate"><span class="pre">super_gradients.training.metrics.segmentation_metrics.IoU</span></code></a></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryIOU.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryIOU.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.BinaryIOU.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Computes intersection over union (IoU)</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryIOU.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.BinaryIOU.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryIOU.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.BinaryIOU.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- <dl class="py class">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryDice">
- <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.metrics.</span></span><span class="sig-name descname"><span class="pre">BinaryDice</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dist_sync_on_step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ignore_index</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">int</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">threshold</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">float</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metrics_args_prep_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn" title="super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn"><span class="pre">super_gradients.training.metrics.segmentation_metrics.AbstractMetricsArgsPrepFn</span></a><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryDice"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.BinaryDice" title="Permalink to this definition"></a></dt>
- <dd><p>Bases: <a class="reference internal" href="#super_gradients.training.metrics.segmentation_metrics.Dice" title="super_gradients.training.metrics.segmentation_metrics.Dice"><code class="xref py py-class docutils literal notranslate"><span class="pre">super_gradients.training.metrics.segmentation_metrics.Dice</span></code></a></p>
- <dl class="py method">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryDice.compute">
- <span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/metrics/segmentation_metrics.html#BinaryDice.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.metrics.BinaryDice.compute" title="Permalink to this definition"></a></dt>
- <dd><p>Computes Dice coefficient</p>
- </dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryDice.confmat">
- <span class="sig-name descname"><span class="pre">confmat</span></span><em class="property"><span class="pre">:</span> <span class="pre">torch.Tensor</span></em><a class="headerlink" href="#super_gradients.training.metrics.BinaryDice.confmat" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- <dl class="py attribute">
- <dt class="sig sig-object py" id="super_gradients.training.metrics.BinaryDice.training">
- <span class="sig-name descname"><span class="pre">training</span></span><em class="property"><span class="pre">:</span> <span class="pre">bool</span></em><a class="headerlink" href="#super_gradients.training.metrics.BinaryDice.training" title="Permalink to this definition"></a></dt>
- <dd></dd></dl>
- </dd></dl>
- </section>
- </section>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|