1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.utils.sg_model_utils — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -> Fill Survey</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#supergradients">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#professional-tools-integration">Professional Tools Integration</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.utils.sg_model_utils</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.utils.sg_model_utils</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">os</span>
- <span class="kn">import</span> <span class="nn">sys</span>
- <span class="kn">import</span> <span class="nn">socket</span>
- <span class="kn">import</span> <span class="nn">time</span>
- <span class="kn">from</span> <span class="nn">dataclasses</span> <span class="kn">import</span> <span class="n">dataclass</span>
- <span class="kn">from</span> <span class="nn">multiprocessing</span> <span class="kn">import</span> <span class="n">Process</span>
- <span class="kn">from</span> <span class="nn">pathlib</span> <span class="kn">import</span> <span class="n">Path</span>
- <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Dict</span>
- <span class="kn">import</span> <span class="nn">random</span>
- <span class="kn">from</span> <span class="nn">treelib</span> <span class="kn">import</span> <span class="n">Tree</span>
- <span class="kn">from</span> <span class="nn">termcolor</span> <span class="kn">import</span> <span class="n">colored</span>
- <span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">torch.utils.tensorboard</span> <span class="kn">import</span> <span class="n">SummaryWriter</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.exceptions.dataset_exceptions</span> <span class="kn">import</span> <span class="n">UnsupportedBatchItemsFormat</span>
- <span class="c1"># TODO: These utils should move to sg_model package as internal (private) helper functions</span>
- <span class="n">IS_BETTER_COLOR</span> <span class="o">=</span> <span class="p">{</span><span class="kc">True</span><span class="p">:</span> <span class="s2">"green"</span><span class="p">,</span> <span class="kc">False</span><span class="p">:</span> <span class="s2">"red"</span><span class="p">}</span>
- <span class="n">IS_GREATER_SYMBOLS</span> <span class="o">=</span> <span class="p">{</span><span class="kc">True</span><span class="p">:</span> <span class="s2">"↗"</span><span class="p">,</span> <span class="kc">False</span><span class="p">:</span> <span class="s2">"↘"</span><span class="p">}</span>
- <div class="viewcode-block" id="MonitoredValue"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.MonitoredValue">[docs]</a><span class="nd">@dataclass</span>
- <span class="k">class</span> <span class="nc">MonitoredValue</span><span class="p">:</span>
- <span class="sd">"""Store a value and some indicators relative to its past iterations.</span>
- <span class="sd"> The value can be a metric/loss, and the iteration can be epochs/batch.</span>
- <span class="sd"> """</span>
- <span class="n">name</span><span class="p">:</span> <span class="nb">str</span>
- <span class="n">greater_is_better</span><span class="p">:</span> <span class="nb">bool</span>
- <span class="n">current</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="n">previous</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="n">best</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="n">change_from_previous</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="n">change_from_best</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="nd">@property</span>
- <span class="k">def</span> <span class="nf">is_better_than_previous</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">greater_is_better</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">change_from_best</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">return</span> <span class="kc">None</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">greater_is_better</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">change_from_previous</span> <span class="o">>=</span> <span class="mi">0</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">change_from_previous</span> <span class="o"><</span> <span class="mi">0</span>
- <span class="nd">@property</span>
- <span class="k">def</span> <span class="nf">is_best_value</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">greater_is_better</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">change_from_best</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">return</span> <span class="kc">None</span>
- <span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">greater_is_better</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">change_from_best</span> <span class="o">>=</span> <span class="mi">0</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">change_from_best</span> <span class="o"><</span> <span class="mi">0</span></div>
- <div class="viewcode-block" id="update_monitored_value"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.update_monitored_value">[docs]</a><span class="k">def</span> <span class="nf">update_monitored_value</span><span class="p">(</span><span class="n">previous_monitored_value</span><span class="p">:</span> <span class="n">MonitoredValue</span><span class="p">,</span> <span class="n">new_value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="n">MonitoredValue</span><span class="p">:</span>
- <span class="sd">"""Update the given ValueToMonitor object (could be a loss or a metric) with the new value</span>
- <span class="sd"> :param previous_monitored_value: The stats about the value that is monitored throughout epochs.</span>
- <span class="sd"> :param new_value: The value of the current epoch that will be used to update previous_monitored_value</span>
- <span class="sd"> :return:</span>
- <span class="sd"> """</span>
- <span class="n">previous_value</span><span class="p">,</span> <span class="n">previous_best_value</span> <span class="o">=</span> <span class="n">previous_monitored_value</span><span class="o">.</span><span class="n">current</span><span class="p">,</span> <span class="n">previous_monitored_value</span><span class="o">.</span><span class="n">best</span>
- <span class="n">name</span><span class="p">,</span> <span class="n">greater_is_better</span> <span class="o">=</span> <span class="n">previous_monitored_value</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">previous_monitored_value</span><span class="o">.</span><span class="n">greater_is_better</span>
- <span class="k">if</span> <span class="n">previous_best_value</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">previous_best_value</span> <span class="o">=</span> <span class="n">previous_value</span>
- <span class="k">elif</span> <span class="n">greater_is_better</span><span class="p">:</span>
- <span class="n">previous_best_value</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">previous_value</span><span class="p">,</span> <span class="n">previous_best_value</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">previous_best_value</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">previous_value</span><span class="p">,</span> <span class="n">previous_best_value</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">previous_value</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">change_from_previous</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="n">change_from_best</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">change_from_previous</span> <span class="o">=</span> <span class="n">new_value</span> <span class="o">-</span> <span class="n">previous_value</span>
- <span class="n">change_from_best</span> <span class="o">=</span> <span class="n">new_value</span> <span class="o">-</span> <span class="n">previous_best_value</span>
- <span class="k">return</span> <span class="n">MonitoredValue</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> <span class="n">current</span><span class="o">=</span><span class="n">new_value</span><span class="p">,</span> <span class="n">previous</span><span class="o">=</span><span class="n">previous_value</span><span class="p">,</span> <span class="n">best</span><span class="o">=</span><span class="n">previous_best_value</span><span class="p">,</span>
- <span class="n">change_from_previous</span><span class="o">=</span><span class="n">change_from_previous</span><span class="p">,</span> <span class="n">change_from_best</span><span class="o">=</span><span class="n">change_from_best</span><span class="p">,</span>
- <span class="n">greater_is_better</span><span class="o">=</span><span class="n">greater_is_better</span><span class="p">)</span></div>
- <div class="viewcode-block" id="update_monitored_values_dict"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.update_monitored_values_dict">[docs]</a><span class="k">def</span> <span class="nf">update_monitored_values_dict</span><span class="p">(</span><span class="n">monitored_values_dict</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">MonitoredValue</span><span class="p">],</span>
- <span class="n">new_values_dict</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">float</span><span class="p">])</span> <span class="o">-></span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">MonitoredValue</span><span class="p">]:</span>
- <span class="sd">"""Update the given ValueToMonitor object (could be a loss or a metric) with the new value</span>
- <span class="sd"> :param monitored_values_dict: Dict mapping value names to their stats throughout epochs.</span>
- <span class="sd"> :param new_values_dict: Dict mapping value names to their new (i.e. current epoch) value.</span>
- <span class="sd"> :return: Updated monitored_values_dict</span>
- <span class="sd"> """</span>
- <span class="k">for</span> <span class="n">monitored_value_name</span> <span class="ow">in</span> <span class="n">monitored_values_dict</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
- <span class="n">monitored_values_dict</span><span class="p">[</span><span class="n">monitored_value_name</span><span class="p">]</span> <span class="o">=</span> <span class="n">update_monitored_value</span><span class="p">(</span>
- <span class="n">new_value</span><span class="o">=</span><span class="n">new_values_dict</span><span class="p">[</span><span class="n">monitored_value_name</span><span class="p">],</span>
- <span class="n">previous_monitored_value</span><span class="o">=</span><span class="n">monitored_values_dict</span><span class="p">[</span><span class="n">monitored_value_name</span><span class="p">],</span>
- <span class="p">)</span>
- <span class="k">return</span> <span class="n">monitored_values_dict</span></div>
- <div class="viewcode-block" id="display_epoch_summary"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.display_epoch_summary">[docs]</a><span class="k">def</span> <span class="nf">display_epoch_summary</span><span class="p">(</span><span class="n">epoch</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n_digits</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
- <span class="n">train_monitored_values</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">MonitoredValue</span><span class="p">],</span>
- <span class="n">valid_monitored_values</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">MonitoredValue</span><span class="p">])</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span>
- <span class="sd">"""Display a summary of loss/metric of interest, for a given epoch.</span>
- <span class="sd"> :param epoch: the number of epoch.</span>
- <span class="sd"> :param n_digits: number of digits to display on screen for float values</span>
- <span class="sd"> :param train_monitored_values: mapping of loss/metric with their stats that will be displayed</span>
- <span class="sd"> :param valid_monitored_values: mapping of loss/metric with their stats that will be displayed</span>
- <span class="sd"> :return:</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="nf">_format_to_str</span><span class="p">(</span><span class="n">val</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span>
- <span class="k">return</span> <span class="nb">str</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">val</span><span class="p">,</span> <span class="n">n_digits</span><span class="p">))</span>
- <span class="k">def</span> <span class="nf">_generate_tree</span><span class="p">(</span><span class="n">value_name</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">monitored_value</span><span class="p">:</span> <span class="n">MonitoredValue</span><span class="p">)</span> <span class="o">-></span> <span class="n">Tree</span><span class="p">:</span>
- <span class="sd">"""Generate a tree that represents the stats of a given loss/metric."""</span>
- <span class="n">current</span> <span class="o">=</span> <span class="n">_format_to_str</span><span class="p">(</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">current</span><span class="p">)</span>
- <span class="n">root_id</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="nb">hash</span><span class="p">(</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">value_name</span><span class="si">}</span><span class="s2"> = </span><span class="si">{</span><span class="n">current</span><span class="si">}</span><span class="s2">"</span><span class="p">))</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">random</span><span class="p">())</span>
- <span class="n">tree</span> <span class="o">=</span> <span class="n">Tree</span><span class="p">()</span>
- <span class="n">tree</span><span class="o">.</span><span class="n">create_node</span><span class="p">(</span><span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">value_name</span><span class="o">.</span><span class="n">capitalize</span><span class="p">()</span><span class="si">}</span><span class="s2"> = </span><span class="si">{</span><span class="n">current</span><span class="si">}</span><span class="s2">"</span><span class="p">,</span> <span class="n">identifier</span><span class="o">=</span><span class="n">root_id</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">monitored_value</span><span class="o">.</span><span class="n">previous</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">previous</span> <span class="o">=</span> <span class="n">_format_to_str</span><span class="p">(</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">previous</span><span class="p">)</span>
- <span class="n">best</span> <span class="o">=</span> <span class="n">_format_to_str</span><span class="p">(</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">best</span><span class="p">)</span>
- <span class="n">change_from_previous</span> <span class="o">=</span> <span class="n">_format_to_str</span><span class="p">(</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">change_from_previous</span><span class="p">)</span>
- <span class="n">change_from_best</span> <span class="o">=</span> <span class="n">_format_to_str</span><span class="p">(</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">change_from_best</span><span class="p">)</span>
- <span class="n">diff_with_prev_colored</span> <span class="o">=</span> <span class="n">colored</span><span class="p">(</span>
- <span class="n">text</span><span class="o">=</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">IS_GREATER_SYMBOLS</span><span class="p">[</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">change_from_previous</span> <span class="o">></span> <span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2"> </span><span class="si">{</span><span class="n">change_from_previous</span><span class="si">}</span><span class="s2">"</span><span class="p">,</span>
- <span class="n">color</span><span class="o">=</span><span class="n">IS_BETTER_COLOR</span><span class="p">[</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">is_better_than_previous</span><span class="p">]</span>
- <span class="p">)</span>
- <span class="n">diff_with_best_colored</span> <span class="o">=</span> <span class="n">colored</span><span class="p">(</span>
- <span class="n">text</span><span class="o">=</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">IS_GREATER_SYMBOLS</span><span class="p">[</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">change_from_best</span> <span class="o">></span> <span class="mi">0</span><span class="p">]</span><span class="si">}</span><span class="s2"> </span><span class="si">{</span><span class="n">change_from_best</span><span class="si">}</span><span class="s2">"</span><span class="p">,</span>
- <span class="n">color</span><span class="o">=</span><span class="n">IS_BETTER_COLOR</span><span class="p">[</span><span class="n">monitored_value</span><span class="o">.</span><span class="n">is_best_value</span><span class="p">]</span>
- <span class="p">)</span>
- <span class="n">tree</span><span class="o">.</span><span class="n">create_node</span><span class="p">(</span>
- <span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s2">"Epoch N-1 = </span><span class="si">{</span><span class="n">previous</span><span class="si">:</span><span class="s2">6</span><span class="si">}</span><span class="s2"> (</span><span class="si">{</span><span class="n">diff_with_prev_colored</span><span class="si">:</span><span class="s2">8</span><span class="si">}</span><span class="s2">)"</span><span class="p">,</span>
- <span class="n">identifier</span><span class="o">=</span><span class="sa">f</span><span class="s2">"0_previous_</span><span class="si">{</span><span class="n">root_id</span><span class="si">}</span><span class="s2">"</span><span class="p">,</span>
- <span class="n">parent</span><span class="o">=</span><span class="n">root_id</span>
- <span class="p">)</span>
- <span class="n">tree</span><span class="o">.</span><span class="n">create_node</span><span class="p">(</span>
- <span class="n">tag</span><span class="o">=</span><span class="sa">f</span><span class="s2">"Best until now = </span><span class="si">{</span><span class="n">best</span><span class="si">:</span><span class="s2">6</span><span class="si">}</span><span class="s2"> (</span><span class="si">{</span><span class="n">diff_with_best_colored</span><span class="si">:</span><span class="s2">8</span><span class="si">}</span><span class="s2">)"</span><span class="p">,</span>
- <span class="n">identifier</span><span class="o">=</span><span class="sa">f</span><span class="s2">"1_best_</span><span class="si">{</span><span class="n">root_id</span><span class="si">}</span><span class="s2">"</span><span class="p">,</span>
- <span class="n">parent</span><span class="o">=</span><span class="n">root_id</span>
- <span class="p">)</span>
- <span class="k">return</span> <span class="n">tree</span>
- <span class="n">train_tree</span> <span class="o">=</span> <span class="n">Tree</span><span class="p">()</span>
- <span class="n">train_tree</span><span class="o">.</span><span class="n">create_node</span><span class="p">(</span><span class="s2">"Training"</span><span class="p">,</span> <span class="s2">"Training"</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">train_monitored_values</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="n">train_tree</span><span class="o">.</span><span class="n">paste</span><span class="p">(</span><span class="s1">'Training'</span><span class="p">,</span> <span class="n">new_tree</span><span class="o">=</span><span class="n">_generate_tree</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">monitored_value</span><span class="o">=</span><span class="n">value</span><span class="p">))</span>
- <span class="n">valid_tree</span> <span class="o">=</span> <span class="n">Tree</span><span class="p">()</span>
- <span class="n">valid_tree</span><span class="o">.</span><span class="n">create_node</span><span class="p">(</span><span class="s2">"Validation"</span><span class="p">,</span> <span class="s2">"Validation"</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">name</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">valid_monitored_values</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="n">valid_tree</span><span class="o">.</span><span class="n">paste</span><span class="p">(</span><span class="s1">'Validation'</span><span class="p">,</span> <span class="n">new_tree</span><span class="o">=</span><span class="n">_generate_tree</span><span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">monitored_value</span><span class="o">=</span><span class="n">value</span><span class="p">))</span>
- <span class="n">summary_tree</span> <span class="o">=</span> <span class="n">Tree</span><span class="p">()</span>
- <span class="n">summary_tree</span><span class="o">.</span><span class="n">create_node</span><span class="p">(</span><span class="sa">f</span><span class="s2">"SUMMARY OF EPOCH </span><span class="si">{</span><span class="n">epoch</span><span class="si">}</span><span class="s2">"</span><span class="p">,</span> <span class="s2">"Summary"</span><span class="p">)</span>
- <span class="n">summary_tree</span><span class="o">.</span><span class="n">paste</span><span class="p">(</span><span class="s2">"Summary"</span><span class="p">,</span> <span class="n">train_tree</span><span class="p">)</span>
- <span class="n">summary_tree</span><span class="o">.</span><span class="n">paste</span><span class="p">(</span><span class="s2">"Summary"</span><span class="p">,</span> <span class="n">valid_tree</span><span class="p">)</span>
- <span class="n">summary_tree</span><span class="o">.</span><span class="n">show</span><span class="p">()</span></div>
- <div class="viewcode-block" id="try_port"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.try_port">[docs]</a><span class="k">def</span> <span class="nf">try_port</span><span class="p">(</span><span class="n">port</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> try_port - Helper method for tensorboard port binding</span>
- <span class="sd"> :param port:</span>
- <span class="sd"> :return:</span>
- <span class="sd"> """</span>
- <span class="n">sock</span> <span class="o">=</span> <span class="n">socket</span><span class="o">.</span><span class="n">socket</span><span class="p">(</span><span class="n">socket</span><span class="o">.</span><span class="n">AF_INET</span><span class="p">,</span> <span class="n">socket</span><span class="o">.</span><span class="n">SOCK_STREAM</span><span class="p">)</span>
- <span class="n">is_port_available</span> <span class="o">=</span> <span class="kc">False</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="n">sock</span><span class="o">.</span><span class="n">bind</span><span class="p">((</span><span class="s2">"localhost"</span><span class="p">,</span> <span class="n">port</span><span class="p">))</span>
- <span class="n">is_port_available</span> <span class="o">=</span> <span class="kc">True</span>
- <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">ex</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'Port '</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">port</span><span class="p">)</span> <span class="o">+</span> <span class="s1">' is in use'</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">ex</span><span class="p">))</span>
- <span class="n">sock</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
- <span class="k">return</span> <span class="n">is_port_available</span></div>
- <div class="viewcode-block" id="launch_tensorboard_process"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.launch_tensorboard_process">[docs]</a><span class="k">def</span> <span class="nf">launch_tensorboard_process</span><span class="p">(</span><span class="n">checkpoints_dir_path</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">sleep_postpone</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">port</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="n">Tuple</span><span class="p">[</span><span class="n">Process</span><span class="p">,</span> <span class="nb">int</span><span class="p">]:</span>
- <span class="sd">"""</span>
- <span class="sd"> launch_tensorboard_process - Default behavior is to scan all free ports from 6006-6016 and try using them</span>
- <span class="sd"> unless port is defined by the user</span>
- <span class="sd"> :param checkpoints_dir_path:</span>
- <span class="sd"> :param sleep_postpone:</span>
- <span class="sd"> :param port:</span>
- <span class="sd"> :return: tuple of tb process, port</span>
- <span class="sd"> """</span>
- <span class="n">logdir_path</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">Path</span><span class="p">(</span><span class="n">checkpoints_dir_path</span><span class="p">)</span><span class="o">.</span><span class="n">parent</span><span class="o">.</span><span class="n">absolute</span><span class="p">())</span>
- <span class="n">tb_cmd</span> <span class="o">=</span> <span class="s1">'tensorboard --logdir='</span> <span class="o">+</span> <span class="n">logdir_path</span> <span class="o">+</span> <span class="s1">' --bind_all'</span>
- <span class="k">if</span> <span class="n">port</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">tb_ports</span> <span class="o">=</span> <span class="p">[</span><span class="n">port</span><span class="p">]</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">tb_ports</span> <span class="o">=</span> <span class="nb">range</span><span class="p">(</span><span class="mi">6006</span><span class="p">,</span> <span class="mi">6016</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">tb_port</span> <span class="ow">in</span> <span class="n">tb_ports</span><span class="p">:</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="n">try_port</span><span class="p">(</span><span class="n">tb_port</span><span class="p">):</span>
- <span class="k">continue</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'Starting Tensor-Board process on port: '</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">tb_port</span><span class="p">))</span>
- <span class="n">tensor_board_process</span> <span class="o">=</span> <span class="n">Process</span><span class="p">(</span><span class="n">target</span><span class="o">=</span><span class="n">os</span><span class="o">.</span><span class="n">system</span><span class="p">,</span> <span class="n">args</span><span class="o">=</span><span class="p">([</span><span class="n">tb_cmd</span> <span class="o">+</span> <span class="s1">' --port='</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">tb_port</span><span class="p">)]))</span>
- <span class="n">tensor_board_process</span><span class="o">.</span><span class="n">daemon</span> <span class="o">=</span> <span class="kc">True</span>
- <span class="n">tensor_board_process</span><span class="o">.</span><span class="n">start</span><span class="p">()</span>
- <span class="c1"># LET THE TENSORBOARD PROCESS START</span>
- <span class="k">if</span> <span class="n">sleep_postpone</span><span class="p">:</span>
- <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">tensor_board_process</span><span class="p">,</span> <span class="n">tb_port</span>
- <span class="c1"># RETURNING IRRELEVANT VALUES</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'Failed to initialize Tensor-Board process on port: '</span> <span class="o">+</span> <span class="s1">', '</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="nb">str</span><span class="p">,</span> <span class="n">tb_ports</span><span class="p">)))</span>
- <span class="k">return</span> <span class="kc">None</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span></div>
- <div class="viewcode-block" id="init_summary_writer"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.init_summary_writer">[docs]</a><span class="k">def</span> <span class="nf">init_summary_writer</span><span class="p">(</span><span class="n">tb_dir</span><span class="p">,</span> <span class="n">checkpoint_loaded</span><span class="p">,</span> <span class="n">user_prompt</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
- <span class="sd">"""Remove previous tensorboard files from directory and launch a tensor board process"""</span>
- <span class="c1"># If the training is from scratch, Walk through destination folder and delete existing tensorboard logs</span>
- <span class="n">user</span> <span class="o">=</span> <span class="s1">''</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="n">checkpoint_loaded</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">filename</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="n">tb_dir</span><span class="p">):</span>
- <span class="k">if</span> <span class="s1">'events'</span> <span class="ow">in</span> <span class="n">filename</span><span class="p">:</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="n">user_prompt</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'"</span><span class="si">{}</span><span class="s1">" will not be deleted'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">filename</span><span class="p">))</span>
- <span class="k">continue</span>
- <span class="k">while</span> <span class="kc">True</span><span class="p">:</span>
- <span class="c1"># Verify with user before deleting old tensorboard files</span>
- <span class="n">user</span> <span class="o">=</span> <span class="nb">input</span><span class="p">(</span><span class="s1">'</span><span class="se">\n</span><span class="s1">OLDER TENSORBOARD FILES EXISTS IN EXPERIMENT FOLDER:</span><span class="se">\n</span><span class="s1">"</span><span class="si">{}</span><span class="s1">"</span><span class="se">\n</span><span class="s1">'</span>
- <span class="s1">'DO YOU WANT TO DELETE THEM? [y/n]'</span>
- <span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">filename</span><span class="p">))</span> <span class="k">if</span> <span class="p">(</span><span class="n">user</span> <span class="o">!=</span> <span class="s1">'n'</span> <span class="ow">or</span> <span class="n">user</span> <span class="o">!=</span> <span class="s1">'y'</span><span class="p">)</span> <span class="k">else</span> <span class="n">user</span>
- <span class="k">if</span> <span class="n">user</span> <span class="o">==</span> <span class="s1">'y'</span><span class="p">:</span>
- <span class="n">os</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="s1">'</span><span class="si">{}</span><span class="s1">/</span><span class="si">{}</span><span class="s1">'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">tb_dir</span><span class="p">,</span> <span class="n">filename</span><span class="p">))</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'DELETED: </span><span class="si">{}</span><span class="s1">!'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">filename</span><span class="p">))</span>
- <span class="k">break</span>
- <span class="k">elif</span> <span class="n">user</span> <span class="o">==</span> <span class="s1">'n'</span><span class="p">:</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'"</span><span class="si">{}</span><span class="s1">" will not be deleted'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">filename</span><span class="p">))</span>
- <span class="k">break</span>
- <span class="nb">print</span><span class="p">(</span><span class="s1">'Unknown answer...'</span><span class="p">)</span>
- <span class="c1"># Launch a tensorboard process</span>
- <span class="k">return</span> <span class="n">SummaryWriter</span><span class="p">(</span><span class="n">tb_dir</span><span class="p">)</span></div>
- <div class="viewcode-block" id="add_log_to_file"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.add_log_to_file">[docs]</a><span class="k">def</span> <span class="nf">add_log_to_file</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="n">results_titles_list</span><span class="p">,</span> <span class="n">results_values_list</span><span class="p">,</span> <span class="n">epoch</span><span class="p">,</span> <span class="n">max_epochs</span><span class="p">):</span>
- <span class="sd">"""Add a message to the log file"""</span>
- <span class="c1"># -Note: opening and closing the file every time is in-efficient. It is done for experimental purposes</span>
- <span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span> <span class="s1">'a'</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
- <span class="n">f</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="s1">'</span><span class="se">\n</span><span class="s1">Epoch (</span><span class="si">%d</span><span class="s1">/</span><span class="si">%d</span><span class="s1">) - '</span> <span class="o">%</span> <span class="p">(</span><span class="n">epoch</span><span class="p">,</span> <span class="n">max_epochs</span><span class="p">))</span>
- <span class="k">for</span> <span class="n">result_title</span><span class="p">,</span> <span class="n">result_value</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">results_titles_list</span><span class="p">,</span> <span class="n">results_values_list</span><span class="p">):</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">result_value</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
- <span class="n">result_value</span> <span class="o">=</span> <span class="n">result_value</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
- <span class="n">f</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">result_title</span> <span class="o">+</span> <span class="s1">': '</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">result_value</span><span class="p">)</span> <span class="o">+</span> <span class="s1">'</span><span class="se">\t</span><span class="s1">'</span><span class="p">)</span></div>
- <div class="viewcode-block" id="write_training_results"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.write_training_results">[docs]</a><span class="k">def</span> <span class="nf">write_training_results</span><span class="p">(</span><span class="n">writer</span><span class="p">,</span> <span class="n">results_titles_list</span><span class="p">,</span> <span class="n">results_values_list</span><span class="p">,</span> <span class="n">epoch</span><span class="p">):</span>
- <span class="sd">"""Stores the training and validation loss and accuracy for current epoch in a tensorboard file"""</span>
- <span class="k">for</span> <span class="n">res_key</span><span class="p">,</span> <span class="n">res_val</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">results_titles_list</span><span class="p">,</span> <span class="n">results_values_list</span><span class="p">):</span>
- <span class="c1"># USE ONLY LOWER-CASE LETTERS AND REPLACE SPACES WITH '_' TO AVOID MANY TITLES FOR THE SAME KEY</span>
- <span class="n">corrected_res_key</span> <span class="o">=</span> <span class="n">res_key</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">' '</span><span class="p">,</span> <span class="s1">'_'</span><span class="p">)</span>
- <span class="n">writer</span><span class="o">.</span><span class="n">add_scalar</span><span class="p">(</span><span class="n">corrected_res_key</span><span class="p">,</span> <span class="n">res_val</span><span class="p">,</span> <span class="n">epoch</span><span class="p">)</span>
- <span class="n">writer</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span></div>
- <div class="viewcode-block" id="write_hpms"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.write_hpms">[docs]</a><span class="k">def</span> <span class="nf">write_hpms</span><span class="p">(</span><span class="n">writer</span><span class="p">,</span> <span class="n">hpmstructs</span><span class="o">=</span><span class="p">[],</span> <span class="n">special_conf</span><span class="o">=</span><span class="p">{}):</span>
- <span class="sd">"""Stores the training and dataset hyper params in the tensorboard file"""</span>
- <span class="n">hpm_string</span> <span class="o">=</span> <span class="s2">""</span>
- <span class="k">for</span> <span class="n">hpm</span> <span class="ow">in</span> <span class="n">hpmstructs</span><span class="p">:</span>
- <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">val</span> <span class="ow">in</span> <span class="n">hpm</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="n">hpm_string</span> <span class="o">+=</span> <span class="s1">'</span><span class="si">{}</span><span class="s1">: </span><span class="si">{}</span><span class="s1"> </span><span class="se">\n</span><span class="s1"> '</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">val</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">val</span> <span class="ow">in</span> <span class="n">special_conf</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="n">hpm_string</span> <span class="o">+=</span> <span class="s1">'</span><span class="si">{}</span><span class="s1">: </span><span class="si">{}</span><span class="s1"> </span><span class="se">\n</span><span class="s1"> '</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">val</span><span class="p">)</span>
- <span class="n">writer</span><span class="o">.</span><span class="n">add_text</span><span class="p">(</span><span class="s2">"Hyper_parameters"</span><span class="p">,</span> <span class="n">hpm_string</span><span class="p">)</span>
- <span class="n">writer</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span></div>
- <span class="c1"># TODO: This should probably move into datasets/datasets_utils.py?</span>
- <div class="viewcode-block" id="unpack_batch_items"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.unpack_batch_items">[docs]</a><span class="k">def</span> <span class="nf">unpack_batch_items</span><span class="p">(</span><span class="n">batch_items</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">tuple</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]):</span>
- <span class="sd">"""</span>
- <span class="sd"> Adds support for unpacking batch items in train/validation loop.</span>
- <span class="sd"> @param batch_items: (Union[tuple, torch.Tensor]) returned by the data loader, which is expected to be in one of</span>
- <span class="sd"> the following formats:</span>
- <span class="sd"> 1. torch.Tensor or tuple, s.t inputs = batch_items[0], targets = batch_items[1] and len(batch_items) = 2</span>
- <span class="sd"> 2. tuple: (inputs, targets, additional_batch_items)</span>
- <span class="sd"> where inputs are fed to the network, targets are their corresponding labels and additional_batch_items is a</span>
- <span class="sd"> dictionary (format {additional_batch_item_i_name: additional_batch_item_i ...}) which can be accessed through</span>
- <span class="sd"> the phase context under the attribute additional_batch_item_i_name, using a phase callback.</span>
- <span class="sd"> @return: inputs, target, additional_batch_items</span>
- <span class="sd"> """</span>
- <span class="n">additional_batch_items</span> <span class="o">=</span> <span class="p">{}</span>
- <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch_items</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
- <span class="n">inputs</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="n">batch_items</span>
- <span class="k">elif</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch_items</span><span class="p">)</span> <span class="o">==</span> <span class="mi">3</span><span class="p">:</span>
- <span class="n">inputs</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">additional_batch_items</span> <span class="o">=</span> <span class="n">batch_items</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="k">raise</span> <span class="n">UnsupportedBatchItemsFormat</span><span class="p">()</span>
- <span class="k">return</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">additional_batch_items</span></div>
- <div class="viewcode-block" id="log_uncaught_exceptions"><a class="viewcode-back" href="../../../../super_gradients.training.utils.html#super_gradients.training.utils.sg_model_utils.log_uncaught_exceptions">[docs]</a><span class="k">def</span> <span class="nf">log_uncaught_exceptions</span><span class="p">(</span><span class="n">logger</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Makes logger log uncaught exceptions</span>
- <span class="sd"> @param logger: logging.Logger</span>
- <span class="sd"> @return: None</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="nf">handle_exception</span><span class="p">(</span><span class="n">exc_type</span><span class="p">,</span> <span class="n">exc_value</span><span class="p">,</span> <span class="n">exc_traceback</span><span class="p">):</span>
- <span class="k">if</span> <span class="nb">issubclass</span><span class="p">(</span><span class="n">exc_type</span><span class="p">,</span> <span class="ne">KeyboardInterrupt</span><span class="p">):</span>
- <span class="n">sys</span><span class="o">.</span><span class="n">__excepthook__</span><span class="p">(</span><span class="n">exc_type</span><span class="p">,</span> <span class="n">exc_value</span><span class="p">,</span> <span class="n">exc_traceback</span><span class="p">)</span>
- <span class="k">return</span>
- <span class="n">logger</span><span class="o">.</span><span class="n">error</span><span class="p">(</span><span class="s2">"Uncaught exception"</span><span class="p">,</span> <span class="n">exc_info</span><span class="o">=</span><span class="p">(</span><span class="n">exc_type</span><span class="p">,</span> <span class="n">exc_value</span><span class="p">,</span> <span class="n">exc_traceback</span><span class="p">))</span>
- <span class="n">sys</span><span class="o">.</span><span class="n">excepthook</span> <span class="o">=</span> <span class="n">handle_exception</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|