Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#367 fix: Request correct hydra-core

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:hotfix/ALG-000_hydra-req
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
  1. import unittest
  2. import torch
  3. from torchvision.transforms import Compose, ToTensor
  4. from super_gradients.training.transforms.transforms import Rescale, RandomRescale, CropImageAndMask, PadShortToCropSize
  5. from PIL import Image
  6. from super_gradients.training.datasets.segmentation_datasets.segmentation_dataset import SegmentationDataSet
  7. class SegmentationTransformsTest(unittest.TestCase):
  8. def setUp(self) -> None:
  9. self.default_image_value = 0
  10. self.default_mask_value = 0
  11. def create_sample(self, size):
  12. sample = {
  13. "image": Image.new(mode="RGB", size=size, color=self.default_image_value),
  14. "mask": Image.new(mode="L", size=size, color=self.default_mask_value)
  15. }
  16. return sample
  17. def test_rescale_with_scale_factor(self):
  18. # test raise exception for negative and zero scale factor
  19. kwargs = {"scale_factor": -2}
  20. self.failUnlessRaises(ValueError, Rescale, **kwargs)
  21. kwargs = {"scale_factor": 0}
  22. self.failUnlessRaises(ValueError, Rescale, **kwargs)
  23. # test scale down
  24. sample = self.create_sample((1024, 512))
  25. rescale_scale05 = Rescale(scale_factor=0.5)
  26. out = rescale_scale05(sample)
  27. self.assertEqual((512, 256), out["image"].size)
  28. # test scale up
  29. sample = self.create_sample((1024, 512))
  30. rescale_scale2 = Rescale(scale_factor=2.0)
  31. out = rescale_scale2(sample)
  32. self.assertEqual((2048, 1024), out["image"].size)
  33. # test scale_factor is stronger than other params
  34. sample = self.create_sample((1024, 512))
  35. rescale_scale05 = Rescale(scale_factor=0.5, short_size=300, long_size=600)
  36. out = rescale_scale05(sample)
  37. self.assertEqual((512, 256), out["image"].size)
  38. def test_rescale_with_short_size(self):
  39. # test raise exception for negative and zero short_size
  40. kwargs = {"short_size": 0}
  41. self.failUnlessRaises(ValueError, Rescale, **kwargs)
  42. kwargs = {"short_size": -200}
  43. self.failUnlessRaises(ValueError, Rescale, **kwargs)
  44. # test scale by short size
  45. sample = self.create_sample((1024, 512))
  46. rescale_short256 = Rescale(short_size=256)
  47. out = rescale_short256(sample)
  48. self.assertEqual((512, 256), out["image"].size)
  49. # test short_size is stronger than long_size
  50. sample = self.create_sample((1024, 512))
  51. rescale_scale05 = Rescale(short_size=301, long_size=301)
  52. out = rescale_scale05(sample)
  53. self.assertEqual((602, 301), out["image"].size)
  54. def test_rescale_with_long_size(self):
  55. # test raise exception for negative and zero short_size
  56. kwargs = {"long_size": 0}
  57. self.failUnlessRaises(ValueError, Rescale, **kwargs)
  58. kwargs = {"long_size": -200}
  59. self.failUnlessRaises(ValueError, Rescale, **kwargs)
  60. # test scale by long size
  61. sample = self.create_sample((1024, 512))
  62. rescale_long256 = Rescale(long_size=256)
  63. out = rescale_long256(sample)
  64. self.assertEqual((256, 128), out["image"].size)
  65. def test_random_rescale(self):
  66. # test passing scales argument
  67. random_rescale = RandomRescale(scales=0.1)
  68. self.assertEqual((0.1, 1), random_rescale.scales)
  69. random_rescale = RandomRescale(scales=1.2)
  70. self.assertEqual((1, 1.2), random_rescale.scales)
  71. random_rescale = RandomRescale(scales=(0.5, 1.2))
  72. self.assertEqual((0.5, 1.2), random_rescale.scales)
  73. kwargs = {"scales": -0.5}
  74. self.failUnlessRaises(ValueError, RandomRescale, **kwargs)
  75. # test random rescale
  76. size = [1024, 512]
  77. scales = [0.8, 1.2]
  78. sample = self.create_sample(size)
  79. random_rescale = RandomRescale(scales=(0.8, 1.2))
  80. min_size = [scales[0] * s for s in size]
  81. max_size = [scales[1] * s for s in size]
  82. out = random_rescale(sample)
  83. for i in range(len(min_size)):
  84. self.assertGreaterEqual(out["image"].size[i], min_size[i])
  85. self.assertLessEqual(out["image"].size[i], max_size[i])
  86. def test_padding(self):
  87. # test arguments are valid
  88. pad = PadShortToCropSize(crop_size=200)
  89. self.assertEqual((200, 200), pad.crop_size)
  90. kwargs = {"crop_size": (0, 200)}
  91. self.failUnlessRaises(ValueError, PadShortToCropSize, **kwargs)
  92. kwargs = {"crop_size": 200, "fill_image": 256}
  93. self.failUnlessRaises(ValueError, PadShortToCropSize, **kwargs)
  94. kwargs = {"crop_size": 200, "fill_mask": 256}
  95. self.failUnlessRaises(ValueError, PadShortToCropSize, **kwargs)
  96. in_size = (512, 256)
  97. out_size = (512, 512)
  98. sample = self.create_sample(in_size)
  99. padding = PadShortToCropSize(crop_size=out_size)
  100. out = padding(sample)
  101. self.assertEqual(out_size, out["image"].size)
  102. # pad to odd size
  103. out_size = (512, 501)
  104. sample = self.create_sample(in_size)
  105. padding = PadShortToCropSize(crop_size=out_size)
  106. out = padding(sample)
  107. self.assertEqual(out_size, out["image"].size)
  108. def test_padding_fill_values(self):
  109. image_to_tensor = ToTensor()
  110. # test fill mask
  111. in_size = (256, 128)
  112. out_size = (256, 256)
  113. # padding fill values
  114. fill_mask_value = 32
  115. fill_image_value = 127
  116. sample = self.create_sample(in_size)
  117. padding = PadShortToCropSize(crop_size=out_size, fill_mask=fill_mask_value, fill_image=fill_image_value)
  118. out = padding(sample)
  119. out_mask = SegmentationDataSet.target_transform(out["mask"])
  120. # same as SegmentationDataset transform just without normalization to easily keep track of values.
  121. out_image = image_to_tensor(out["image"])
  122. # test transformed mask values
  123. original_values = out_mask[128 // 2:-128 // 2].unique().tolist()
  124. pad_values = torch.cat([out_mask[:128 // 2], out_mask[-128 // 2:]], dim=0).unique().tolist()
  125. self.assertEqual(len(original_values), 1)
  126. self.assertEqual(original_values[0], self.default_mask_value)
  127. self.assertEqual(len(pad_values), 1)
  128. self.assertEqual(pad_values[0], fill_mask_value)
  129. # test transformed image values
  130. original_values = out_image[:, 128 // 2:-128 // 2].unique().tolist()
  131. pad_values = torch.cat([out_image[:, :128 // 2], out_image[:, -128 // 2:]], dim=1).unique().tolist()
  132. self.assertEqual(len(original_values), 1)
  133. self.assertEqual(original_values[0], self.default_image_value)
  134. self.assertEqual(len(pad_values), 1)
  135. self.assertAlmostEqual(pad_values[0], fill_image_value / 255, delta=1e-5)
  136. def test_crop(self):
  137. # test arguments are valid
  138. pad = CropImageAndMask(crop_size=200, mode="center")
  139. self.assertEqual((200, 200), pad.crop_size)
  140. kwargs = {"crop_size": (0, 200), "mode": "random"}
  141. self.failUnlessRaises(ValueError, CropImageAndMask, **kwargs)
  142. # test unsupported mode
  143. kwargs = {"crop_size": (200, 200), "mode": "deci"}
  144. self.failUnlessRaises(ValueError, CropImageAndMask, **kwargs)
  145. in_size = (1024, 512)
  146. out_size = (128, 256)
  147. crop_center = CropImageAndMask(crop_size=out_size, mode="center")
  148. crop_random = CropImageAndMask(crop_size=out_size, mode="random")
  149. sample = self.create_sample(in_size)
  150. out_center = crop_center(sample)
  151. sample = self.create_sample(in_size)
  152. out_random = crop_random(sample)
  153. self.assertEqual(out_size, out_center["image"].size)
  154. self.assertEqual(out_size, out_random["image"].size)
  155. def test_rescale_padding(self):
  156. in_size = (1024, 512)
  157. out_size = (512, 512)
  158. sample = self.create_sample(in_size)
  159. transform = Compose([
  160. Rescale(long_size=out_size[0]), # rescale to (512, 256)
  161. PadShortToCropSize(crop_size=out_size) # pad to (512, 512)
  162. ])
  163. out = transform(sample)
  164. self.assertEqual(out_size, out["image"].size)
  165. def test_random_rescale_padding_random_crop(self):
  166. img_size = (1024, 512)
  167. crop_size = (256, 128)
  168. sample = self.create_sample(img_size)
  169. transform = Compose([
  170. RandomRescale(scales=(0.1, 2.0)),
  171. PadShortToCropSize(crop_size=crop_size),
  172. CropImageAndMask(crop_size=crop_size, mode="random")
  173. ])
  174. out = transform(sample)
  175. self.assertEqual(crop_size, out["image"].size)
  176. if __name__ == '__main__':
  177. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file