Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#367 fix: Request correct hydra-core

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:hotfix/ALG-000_hydra-req
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  1. import unittest
  2. from super_gradients.training import Trainer, models
  3. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  4. from super_gradients.training.metrics import Accuracy
  5. from super_gradients.training.utils.callbacks import PhaseCallback, Phase, PhaseContext
  6. import torch
  7. class TestInputSizesCallback(PhaseCallback):
  8. """
  9. Phase callback that collects the input shapes rates in lr_placeholder at the end of each forward pass.
  10. """
  11. def __init__(self, shapes_placeholder):
  12. super(TestInputSizesCallback, self).__init__(Phase.TRAIN_BATCH_END)
  13. self.shapes_placeholder = shapes_placeholder
  14. def __call__(self, context: PhaseContext):
  15. self.shapes_placeholder.append(context.inputs.shape)
  16. def test_forward_pass_prep_fn(inputs, targets, *args, **kwargs):
  17. inputs = torch.nn.functional.interpolate(
  18. inputs, size=(50, 50), mode="bilinear", align_corners=False
  19. )
  20. return inputs, targets
  21. class ForwardpassPrepFNTest(unittest.TestCase):
  22. def test_resizing_with_forward_pass_prep_fn(self):
  23. # Define Model
  24. trainer = Trainer("ForwardpassPrepFNTest")
  25. model = models.get("resnet18", num_classes=5)
  26. sizes = []
  27. phase_callbacks = [TestInputSizesCallback(sizes)]
  28. train_params = {"max_epochs": 2, "cosine_final_lr_ratio": 0.2, "lr_mode": "cosine",
  29. "lr_cooldown_epochs": 2,
  30. "lr_warmup_epochs": 3, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
  31. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  32. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
  33. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  34. "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks,
  35. "pre_prediction_callback": test_forward_pass_prep_fn}
  36. trainer.train(model=model, training_params=train_params, train_loader=classification_test_dataloader(),
  37. valid_loader=classification_test_dataloader())
  38. # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
  39. # THE LRS AFTER THE UPDATE
  40. sizes = list(map(lambda size: size[2], sizes))
  41. self.assertTrue(all(map(lambda size: size == 50, sizes)))
Discard
Tip!

Press p or to see the previous file or, n or to see the next file