1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
- import os
- import unittest
- from super_gradients.training import Trainer, utils as core_utils, models
- from super_gradients.training.dataloaders.dataloaders import coco2017_val
- from super_gradients.training.datasets.datasets_conf import COCO_DETECTION_CLASSES_LIST
- from super_gradients.training.models.detection_models.yolo_base import YoloPostPredictionCallback
- from super_gradients.training.utils.detection_utils import DetectionVisualization
- class TestDetectionUtils(unittest.TestCase):
- def test_visualization(self):
- # Create Yolo model
- trainer = Trainer('visualization_test',
- model_checkpoints_location='local',
- post_prediction_callback=YoloPostPredictionCallback())
- model = models.get("yolox_n", pretrained_weights="coco")
- # Simulate one iteration of validation subset
- valid_loader = coco2017_val()
- batch_i, (imgs, targets) = 0, next(iter(valid_loader))
- imgs = core_utils.tensor_container_to_device(imgs, trainer.device)
- targets = core_utils.tensor_container_to_device(targets, trainer.device)
- output = model(imgs)
- output = trainer.post_prediction_callback(output)
- # Visualize the batch
- DetectionVisualization.visualize_batch(imgs, output, targets, batch_i,
- COCO_DETECTION_CLASSES_LIST, trainer.checkpoints_dir_path)
- # Assert images ware created and delete them
- img_name = '{}/{}_{}.jpg'
- for i in range(4):
- img_path = img_name.format(trainer.checkpoints_dir_path, batch_i, i)
- self.assertTrue(os.path.exists(img_path))
- os.remove(img_path)
- if __name__ == '__main__':
- unittest.main()
|