1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
- import numpy as np
- import unittest
- from super_gradients.training.transforms.transforms import DetectionTargetsFormatTransform
- from super_gradients.training.utils.detection_utils import DetectionTargetsFormat
- class DetectionTargetsTransformTest(unittest.TestCase):
- def setUp(self) -> None:
- self.image = np.zeros((3, 100, 200))
- def test_label_first_2_label_last(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- output = np.array([[50, 10, 20, 30, 40]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.XYXY_LABEL,
- output_format=DetectionTargetsFormat.LABEL_XYXY)
- sample = {"image": self.image, "target": input}
- self.assertTrue(np.array_equal(transform(sample)["target"], output))
- def test_xyxy_2_normalized_xyxy(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- _, h, w = self.image.shape
- output = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_XYXY,
- output_format=DetectionTargetsFormat.LABEL_NORMALIZED_XYXY)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.array_equal(output, t_output))
- def test_xyxy_2_cxcywh(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- _, h, w = self.image.shape
- output = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_XYXY,
- output_format=DetectionTargetsFormat.LABEL_CXCYWH)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.array_equal(output, t_output))
- def test_xyxy_2_normalized_cxcywh(self):
- input = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- _, h, w = self.image.shape
- output = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_XYXY,
- output_format=DetectionTargetsFormat.LABEL_NORMALIZED_CXCYWH)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.array_equal(output, t_output))
- def test_normalized_xyxy_2_cxcywh(self):
- _, h, w = self.image.shape
- input = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- output = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_NORMALIZED_XYXY,
- output_format=DetectionTargetsFormat.LABEL_CXCYWH)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output))
- def test_normalized_xyxy_2_normalized_cxcywh(self):
- _, h, w = self.image.shape
- input = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- output = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_NORMALIZED_XYXY,
- output_format=DetectionTargetsFormat.LABEL_NORMALIZED_CXCYWH)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output))
- def test_cxcywh_2_xyxy(self):
- output = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- input = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_CXCYWH,
- output_format=DetectionTargetsFormat.LABEL_XYXY)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.array_equal(output, t_output))
- def test_cxcywh_2_normalized_xyxy(self):
- _, h, w = self.image.shape
- output = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- input = np.array([[10, 30, 40, 20, 20]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_CXCYWH,
- output_format=DetectionTargetsFormat.LABEL_NORMALIZED_XYXY)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.array_equal(output, t_output))
- def test_normalized_cxcywh_2_xyxy(self):
- _, h, w = self.image.shape
- input = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- output = np.array([[10, 20, 30, 40, 50]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_NORMALIZED_CXCYWH,
- output_format=DetectionTargetsFormat.LABEL_XYXY)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output))
- def test_normalized_cxcywh_2_normalized_xyxy(self):
- _, h, w = self.image.shape
- output = np.array([[10, 20 / w, 30 / h, 40 / w, 50 / h]], dtype=np.float32)
- input = np.array([[10, 30 / w, 40 / h, 20 / w, 20 / h]], dtype=np.float32)
- transform = DetectionTargetsFormatTransform(max_targets=1,
- input_format=DetectionTargetsFormat.LABEL_NORMALIZED_CXCYWH,
- output_format=DetectionTargetsFormat.LABEL_NORMALIZED_XYXY)
- sample = {"image": self.image, "target": input}
- t_output = transform(sample)["target"]
- self.assertTrue(np.allclose(output, t_output))
- if __name__ == '__main__':
- unittest.main()
|