Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:hotfix/ALG-000_hydra-req
import unittest import hydra import pkg_resources import yaml from torch.utils.data import DataLoader from super_gradients.training.dataloaders.dataloaders import coco_segmentation_train, coco_segmentation_val from super_gradients.training.datasets.segmentation_datasets.coco_segmentation import CoCoSegmentationDataSet class CocoSegmentationDatasetTest(unittest.TestCase): def setUp(self) -> None: default_config_path = pkg_resources.resource_filename("super_gradients.recipes", "dataset_params/coco_segmentation_dataset_params.yaml") with open(default_config_path, 'r') as file: self.recipe = yaml.safe_load(file) self.recipe = hydra.utils.instantiate(self.recipe) def dataloader_tester(self, dl: DataLoader): self.assertTrue(isinstance(dl, DataLoader)) self.assertTrue(isinstance(dl.dataset, CoCoSegmentationDataSet)) it = iter(dl) for _ in range(10): next(it) def test_train_dataset_creation(self): train_dataset = CoCoSegmentationDataSet(**self.recipe['train_dataset_params']) for i in range(10): image, mask = train_dataset[i] def test_val_dataset_creation(self): val_dataset = CoCoSegmentationDataSet(**self.recipe['val_dataset_params']) for i in range(10): image, mask = val_dataset[i] def test_coco_seg_train_dataloader(self): dl_train = coco_segmentation_train() self.dataloader_tester(dl_train) def test_coco_seg_val_dataloader(self): dl_val = coco_segmentation_val() self.dataloader_tester(dl_val) if __name__ == '__main__': unittest.main()
Press p or to see the previous file or, n or to see the next file