1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
- import unittest
- from super_gradients.training import models
- import super_gradients
- from super_gradients import Trainer
- from super_gradients.training.dataloaders.dataloaders import (
- cifar10_train,
- cifar10_val,
- cifar100_train,
- cifar100_val,
- )
- class TestCifarTrainer(unittest.TestCase):
- def test_train_cifar10_dataloader(self):
- super_gradients.init_trainer()
- trainer = Trainer("test", model_checkpoints_location="local")
- cifar10_train_dl, cifar10_val_dl = cifar10_train(), cifar10_val()
- model = models.get("resnet18_cifar", arch_params={"num_classes": 10})
- trainer.train(
- model=model,
- training_params={
- "max_epochs": 1,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "train_metrics_list": ["Accuracy"],
- "valid_metrics_list": ["Accuracy"],
- "metric_to_watch": "Accuracy",
- },
- train_loader=cifar10_train_dl,
- valid_loader=cifar10_val_dl,
- )
- def test_train_cifar100_dataloader(self):
- super_gradients.init_trainer()
- trainer = Trainer("test", model_checkpoints_location="local")
- cifar100_train_dl, cifar100_val_dl = cifar100_train(), cifar100_val()
- model = models.get("resnet18_cifar", arch_params={"num_classes": 100})
- trainer.train(
- model=model,
- training_params={
- "max_epochs": 1,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "train_metrics_list": ["Accuracy"],
- "valid_metrics_list": ["Accuracy"],
- "metric_to_watch": "Accuracy",
- },
- train_loader=cifar100_train_dl,
- valid_loader=cifar100_val_dl,
- )
- if __name__ == "__main__":
- unittest.main()
|