Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#349 PPLiteSeg modules

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/ALG-670_ppliteseg_modules
@@ -4,8 +4,8 @@ from super_gradients.common.aws_connection import AWSConnector
 from super_gradients.common.data_connection import S3Connector
 from super_gradients.common.data_connection import S3Connector
 from super_gradients.common.data_interface import DatasetDataInterface, ADNNModelRepositoryDataInterfaces
 from super_gradients.common.data_interface import DatasetDataInterface, ADNNModelRepositoryDataInterfaces
 from super_gradients.common.environment.env_helpers import init_trainer, is_distributed
 from super_gradients.common.environment.env_helpers import init_trainer, is_distributed
-from super_gradients.common.data_types import StrictLoad, DeepLearningTask, EvaluationType, MultiGPUMode
+from super_gradients.common.data_types import StrictLoad, DeepLearningTask, EvaluationType, MultiGPUMode, UpsampleMode
 
 
 __all__ = ['explicit_params_validation', 'singleton', 'AWSConnector', 'DatasetDataInterface',
 __all__ = ['explicit_params_validation', 'singleton', 'AWSConnector', 'DatasetDataInterface',
            'ADNNModelRepositoryDataInterfaces', 'S3Connector', 'init_trainer', 'is_distributed',
            'ADNNModelRepositoryDataInterfaces', 'S3Connector', 'init_trainer', 'is_distributed',
-           'StrictLoad', 'DeepLearningTask', 'EvaluationType', 'MultiGPUMode']
+           'StrictLoad', 'DeepLearningTask', 'EvaluationType', 'MultiGPUMode', 'UpsampleMode']
Discard
@@ -1,3 +1,4 @@
-from super_gradients.common.data_types.enum import StrictLoad, DeepLearningTask, MultiGPUMode, EvaluationType
+from super_gradients.common.data_types.enum import StrictLoad, DeepLearningTask, MultiGPUMode, EvaluationType,\
+    UpsampleMode
 
 
-__all__ = ['StrictLoad', 'DeepLearningTask', 'EvaluationType', 'MultiGPUMode']
+__all__ = ['StrictLoad', 'DeepLearningTask', 'EvaluationType', 'MultiGPUMode', 'UpsampleMode']
Discard
@@ -2,6 +2,7 @@ from super_gradients.common.data_types.enum.strict_load import StrictLoad
 from super_gradients.common.data_types.enum.deep_learning_task import DeepLearningTask
 from super_gradients.common.data_types.enum.deep_learning_task import DeepLearningTask
 from super_gradients.common.data_types.enum.evaluation_type import EvaluationType
 from super_gradients.common.data_types.enum.evaluation_type import EvaluationType
 from super_gradients.common.data_types.enum.multi_gpu_mode import MultiGPUMode
 from super_gradients.common.data_types.enum.multi_gpu_mode import MultiGPUMode
+from super_gradients.common.data_types.enum.upsample_mode import UpsampleMode
 
 
 
 
-__all__ = ['StrictLoad', 'DeepLearningTask', 'EvaluationType', 'MultiGPUMode']
+__all__ = ['StrictLoad', 'DeepLearningTask', 'EvaluationType', 'MultiGPUMode', 'UpsampleMode']
Discard
1
2
3
4
5
6
7
8
  1. from enum import Enum
  2. class UpsampleMode(Enum):
  3. NEAREST = "nearest"
  4. BILINEAR = "bilinear"
  5. BICUBIC = "bicubic"
  6. SNPE_BILINEAR = "snpe_bilinear"
Discard
@@ -21,6 +21,7 @@ from super_gradients.training.models.segmentation_models.stdc import STDC1Classi
 
 
 from super_gradients.training.models.kd_modules.kd_module import KDModule
 from super_gradients.training.models.kd_modules.kd_module import KDModule
 from super_gradients.training.models.classification_models.beit import beit_base_patch16_224, beit_large_patch16_224
 from super_gradients.training.models.classification_models.beit import beit_base_patch16_224, beit_large_patch16_224
+from super_gradients.training.models.segmentation_models.ppliteseg import PPLiteSegT, PPLiteSegB
 # IF YOU UPDATE THE ARCHITECTURE DICT PLEASE ALSO UPDATE THE ENUM CLASS DOWN BELOW.
 # IF YOU UPDATE THE ARCHITECTURE DICT PLEASE ALSO UPDATE THE ENUM CLASS DOWN BELOW.
 
 
 
 
@@ -112,7 +113,13 @@ ARCHITECTURES = {"resnet18": resnet.ResNet18,
                  "vit_large": vit_large,
                  "vit_large": vit_large,
                  "vit_huge": vit_huge,
                  "vit_huge": vit_huge,
                  "beit_base_patch16_224": beit_base_patch16_224,
                  "beit_base_patch16_224": beit_base_patch16_224,
-                 "beit_large_patch16_224": beit_large_patch16_224
+                 "beit_large_patch16_224": beit_large_patch16_224,
+                 "pp_lite_t_seg": PPLiteSegT,
+                 "pp_lite_t_seg50": PPLiteSegT,
+                 "pp_lite_t_seg75": PPLiteSegT,
+                 "pp_lite_b_seg": PPLiteSegB,
+                 "pp_lite_b_seg50": PPLiteSegB,
+                 "pp_lite_b_seg75": PPLiteSegB,
                  }
                  }
 
 
 KD_ARCHITECTURES = {
 KD_ARCHITECTURES = {
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from typing import Union, List, Tuple
  5. from super_gradients.training.utils.module_utils import ConvBNReLU, make_upsample_module
  6. from super_gradients.common import UpsampleMode
  7. from super_gradients.training.models.segmentation_models.stdc import SegmentationHead, AbstractSTDCBackbone,\
  8. STDC1Backbone, STDC2Backbone
  9. from super_gradients.training.models.segmentation_models.segmentation_module import SegmentationModule
  10. from super_gradients.training.utils import HpmStruct, get_param
  11. class SPPM(nn.Module):
  12. """
  13. Simple Pyramid Pooling context Module.
  14. """
  15. def __init__(self,
  16. in_channels: int,
  17. inter_channels: int,
  18. out_channels: int,
  19. pool_sizes: List[Union[int, Tuple[int, int]]],
  20. upsample_mode: Union[UpsampleMode, str] = UpsampleMode.BILINEAR,
  21. align_corners: bool = False):
  22. """
  23. :param inter_channels: num channels in each pooling branch.
  24. :param out_channels: The number of output channels after pyramid pooling module.
  25. :param pool_sizes: spatial output sizes of the pooled feature maps.
  26. """
  27. super().__init__()
  28. self.branches = nn.ModuleList([
  29. nn.Sequential(
  30. nn.AdaptiveAvgPool2d(pool_size),
  31. ConvBNReLU(in_channels, inter_channels, kernel_size=1, bias=False),
  32. ) for pool_size in pool_sizes
  33. ])
  34. self.conv_out = ConvBNReLU(inter_channels, out_channels, kernel_size=3, padding=1, bias=False)
  35. self.out_channels = out_channels
  36. self.upsample_mode = upsample_mode
  37. self.align_corners = align_corners
  38. self.pool_sizes = pool_sizes
  39. def forward(self, x):
  40. out = None
  41. input_shape = x.shape[2:]
  42. for branch in self.branches:
  43. y = branch(x)
  44. y = F.interpolate(y, size=input_shape, mode=self.upsample_mode, align_corners=self.align_corners)
  45. out = y if out is None else out + y
  46. out = self.conv_out(out)
  47. return out
  48. def prep_model_for_conversion(self, input_size: Union[tuple, list], stride_ratio: int = 32, **kwargs):
  49. """
  50. Replace Global average pooling with fixed kernels Average pooling, since dynamic kernel sizes are not supported
  51. when compiling to ONNX: `Unsupported: ONNX export of operator adaptive_avg_pool2d, input size not accessible.`
  52. """
  53. input_size = [x / stride_ratio for x in input_size[-2:]]
  54. for branch in self.branches:
  55. global_pool: nn.AdaptiveAvgPool2d = branch[0]
  56. out_size = global_pool.output_size
  57. out_size = out_size if isinstance(out_size, (tuple, list)) else (out_size, out_size)
  58. kernel_size = [int(i / o) for i, o in zip(input_size, out_size)]
  59. branch[0] = nn.AvgPool2d(kernel_size=kernel_size, stride=kernel_size)
  60. class UAFM(nn.Module):
  61. """
  62. Unified Attention Fusion Module, which uses mean and max values across the spatial dimensions.
  63. """
  64. def __init__(self,
  65. in_channels: int,
  66. skip_channels: int,
  67. out_channels: int,
  68. up_factor: int,
  69. upsample_mode: Union[UpsampleMode, str] = UpsampleMode.BILINEAR,
  70. align_corners: bool = False):
  71. """
  72. :params in_channels: num_channels of input feature map.
  73. :param skip_channels: num_channels of skip connection feature map.
  74. :param out_channels: num out channels after features fusion.
  75. :param up_factor: upsample scale factor of the input feature map.
  76. :param upsample_mode: see UpsampleMode for valid options.
  77. """
  78. super().__init__()
  79. self.conv_atten = nn.Sequential(
  80. ConvBNReLU(4, 2, kernel_size=3, padding=1, bias=False),
  81. ConvBNReLU(2, 1, kernel_size=3, padding=1, bias=False, use_activation=False)
  82. )
  83. self.proj_skip = nn.Identity() if skip_channels == in_channels else \
  84. ConvBNReLU(skip_channels, in_channels, kernel_size=3, padding=1, bias=False)
  85. self.up_x = nn.Identity() if up_factor == 1 else \
  86. make_upsample_module(scale_factor=up_factor, upsample_mode=upsample_mode, align_corners=align_corners)
  87. self.conv_out = ConvBNReLU(in_channels, out_channels, kernel_size=3, padding=1, bias=False)
  88. def forward(self, x, skip):
  89. """
  90. :param x: input feature map to upsample before fusion.
  91. :param skip: skip connection feature map.
  92. """
  93. x = self.up_x(x)
  94. skip = self.proj_skip(skip)
  95. atten = torch.cat([
  96. *self._avg_max_spatial_reduce(x, use_concat=False),
  97. *self._avg_max_spatial_reduce(skip, use_concat=False)
  98. ], dim=1)
  99. atten = self.conv_atten(atten)
  100. atten = torch.sigmoid(atten)
  101. out = x * atten + skip * (1 - atten)
  102. out = self.conv_out(out)
  103. return out
  104. @staticmethod
  105. def _avg_max_spatial_reduce(x, use_concat: bool = False):
  106. reduced = [
  107. torch.mean(x, dim=1, keepdim=True),
  108. torch.max(x, dim=1, keepdim=True)[0]
  109. ]
  110. if use_concat:
  111. reduced = torch.cat(reduced, dim=1)
  112. return reduced
  113. class PPLiteSegEncoder(nn.Module):
  114. """
  115. Encoder for PPLiteSeg, include backbone followed by a context module.
  116. """
  117. def __init__(self,
  118. backbone: AbstractSTDCBackbone,
  119. projection_channels_list: List[int],
  120. context_module: nn.Module):
  121. super().__init__()
  122. self.backbone = backbone
  123. self.context_module = context_module
  124. feats_channels = backbone.get_backbone_output_number_of_channels()
  125. self.proj_convs = nn.ModuleList([
  126. ConvBNReLU(feat_ch, proj_ch, kernel_size=3, padding=1, bias=False)
  127. for feat_ch, proj_ch in zip(feats_channels, projection_channels_list)
  128. ])
  129. self.projection_channels_list = projection_channels_list
  130. def get_output_number_of_channels(self) -> List[int]:
  131. channels_list = self.projection_channels_list
  132. if hasattr(self.context_module, "out_channels"):
  133. channels_list.append(self.context_module.out_channels)
  134. return channels_list
  135. def forward(self, x):
  136. feats = self.backbone(x)
  137. y = self.context_module(feats[-1])
  138. feats = [conv(f) for conv, f in zip(self.proj_convs, feats)]
  139. return feats + [y]
  140. class PPLiteSegDecoder(nn.Module):
  141. """
  142. PPLiteSegDecoder using UAFM blocks to fuse feature maps.
  143. """
  144. def __init__(self,
  145. encoder_channels: List[int],
  146. up_factors: List[int],
  147. out_channels: List[int],
  148. upsample_mode,
  149. align_corners: bool):
  150. super().__init__()
  151. # Make a copy of channels list, to prevent out of scope changes.
  152. encoder_channels = encoder_channels.copy()
  153. encoder_channels.reverse()
  154. in_channels = encoder_channels.pop(0)
  155. # TODO - assert argument length
  156. self.up_stages = nn.ModuleList()
  157. for skip_ch, up_factor, out_ch in zip(encoder_channels, up_factors, out_channels):
  158. self.up_stages.append(UAFM(
  159. in_channels=in_channels,
  160. skip_channels=skip_ch,
  161. out_channels=out_ch,
  162. up_factor=up_factor,
  163. upsample_mode=upsample_mode,
  164. align_corners=align_corners
  165. ))
  166. in_channels = out_ch
  167. def forward(self, feats: List[torch.Tensor]):
  168. feats.reverse()
  169. x = feats.pop(0)
  170. for up_stage, skip in zip(self.up_stages, feats):
  171. x = up_stage(x, skip)
  172. return x
  173. class PPLiteSegBase(SegmentationModule):
  174. """
  175. The PP_LiteSeg implementation based on PaddlePaddle.
  176. The original article refers to "Juncai Peng, Yi Liu, Shiyu Tang, Yuying Hao, Lutao Chu,
  177. Guowei Chen, Zewu Wu, Zeyu Chen, Zhiliang Yu, Yuning Du, Qingqing Dang,Baohua Lai,
  178. Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma. PP-LiteSeg: A Superior Real-Time Semantic
  179. Segmentation Model. https://arxiv.org/abs/2204.02681".
  180. """
  181. def __init__(self,
  182. num_classes,
  183. backbone: AbstractSTDCBackbone,
  184. projection_channels_list: List[int],
  185. sppm_inter_channels: int,
  186. sppm_out_channels: int,
  187. sppm_pool_sizes: List[int],
  188. sppm_upsample_mode: Union[UpsampleMode, str],
  189. align_corners: bool,
  190. decoder_up_factors: List[int],
  191. decoder_channels: List[int],
  192. decoder_upsample_mode: Union[UpsampleMode, str],
  193. head_scale_factor: int,
  194. head_upsample_mode: Union[UpsampleMode, str],
  195. head_mid_channels: int,
  196. dropout: float,
  197. use_aux_heads: bool,
  198. aux_hidden_channels: List[int],
  199. aux_scale_factors: List[int]
  200. ):
  201. """
  202. :param backbone: Backbone nn.Module should implement the abstract class `AbstractSTDCBackbone`.
  203. :param projection_channels_list: channels list to project encoder features before fusing with the decoder
  204. stream.
  205. :param sppm_inter_channels: num channels in each sppm pooling branch.
  206. :param sppm_out_channels: The number of output channels after sppm module.
  207. :param sppm_pool_sizes: spatial output sizes of the pooled feature maps.
  208. :param sppm_upsample_mode: Upsample mode to original size after pooling.
  209. :param decoder_up_factors: list upsample factor per decoder stage.
  210. :param decoder_channels: list of num_channels per decoder stage.
  211. :param decoder_upsample_mode: upsample mode in decoder stages, see UpsampleMode for valid options.
  212. :param head_scale_factor: scale factor for final the segmentation head logits.
  213. :param head_upsample_mode: upsample mode to final prediction sizes, see UpsampleMode for valid options.
  214. :param head_mid_channels: num of hidden channels in segmentation head.
  215. :param use_aux_heads: set True when training, output extra Auxiliary feature maps from the encoder module.
  216. :param aux_hidden_channels: List of hidden channels in auxiliary segmentation heads.
  217. :param aux_scale_factors: list of uppsample factors for final auxiliary heads logits.
  218. """
  219. super().__init__(use_aux_heads=use_aux_heads)
  220. # Init Encoder
  221. backbone_out_channels = backbone.get_backbone_output_number_of_channels()
  222. assert len(backbone_out_channels) == len(projection_channels_list), \
  223. f"The length of backbone outputs ({backbone_out_channels}) should match the length of projection channels" \
  224. f"({len(projection_channels_list)})."
  225. context = SPPM(in_channels=backbone_out_channels[-1],
  226. inter_channels=sppm_inter_channels,
  227. out_channels=sppm_out_channels,
  228. pool_sizes=sppm_pool_sizes,
  229. upsample_mode=sppm_upsample_mode,
  230. align_corners=align_corners)
  231. self.encoder = PPLiteSegEncoder(backbone=backbone,
  232. context_module=context,
  233. projection_channels_list=projection_channels_list)
  234. encoder_channels = self.encoder.get_output_number_of_channels()
  235. # Init Decoder
  236. self.decoder = PPLiteSegDecoder(encoder_channels=encoder_channels,
  237. up_factors=decoder_up_factors,
  238. out_channels=decoder_channels,
  239. upsample_mode=decoder_upsample_mode,
  240. align_corners=align_corners)
  241. # Init Segmentation classification heads
  242. self.seg_head = nn.Sequential(
  243. SegmentationHead(in_channels=decoder_channels[-1],
  244. mid_channels=head_mid_channels,
  245. num_classes=num_classes,
  246. dropout=dropout),
  247. make_upsample_module(scale_factor=head_scale_factor, upsample_mode=head_upsample_mode,
  248. align_corners=align_corners)
  249. )
  250. # Auxiliary heads
  251. if self.use_aux_heads:
  252. encoder_out_channels = projection_channels_list
  253. self.aux_heads = nn.ModuleList([
  254. nn.Sequential(
  255. SegmentationHead(backbone_ch, hidden_ch, num_classes, dropout=dropout),
  256. make_upsample_module(scale_factor=scale_factor, upsample_mode=head_upsample_mode,
  257. align_corners=align_corners)
  258. ) for backbone_ch, hidden_ch, scale_factor in zip(encoder_out_channels, aux_hidden_channels,
  259. aux_scale_factors)
  260. ])
  261. self.init_params()
  262. def _remove_auxiliary_heads(self):
  263. if hasattr(self, "aux_heads"):
  264. del self.aux_heads
  265. @property
  266. def backbone(self) -> nn.Module:
  267. """
  268. Support SG load backbone when training.
  269. """
  270. return self.encoder.backbone
  271. def forward(self, x):
  272. feats = self.encoder(x)
  273. if self.use_aux_heads:
  274. enc_feats = feats[:-1]
  275. x = self.decoder(feats)
  276. x = self.seg_head(x)
  277. if not self.use_aux_heads:
  278. return x
  279. aux_feats = [aux_head(feat) for feat, aux_head in zip(enc_feats, self.aux_heads)]
  280. return tuple([x] + aux_feats)
  281. def initialize_param_groups(self, lr: float, training_params: HpmStruct) -> list:
  282. """
  283. Custom param groups for training:
  284. - Different lr for backbone and the rest, if `multiply_head_lr` key is in `training_params`.
  285. """
  286. multiply_head_lr = get_param(training_params, "multiply_head_lr", 1)
  287. multiply_lr_params, no_multiply_params = self._separate_lr_multiply_params()
  288. param_groups = [{"named_params": no_multiply_params, "lr": lr, "name": "no_multiply_params"},
  289. {"named_params": multiply_lr_params, "lr": lr * multiply_head_lr, "name": "multiply_lr_params"}]
  290. return param_groups
  291. def update_param_groups(self, param_groups: list, lr: float, epoch: int, iter: int, training_params: HpmStruct,
  292. total_batch: int) -> list:
  293. multiply_head_lr = get_param(training_params, "multiply_head_lr", 1)
  294. for param_group in param_groups:
  295. param_group['lr'] = lr
  296. if param_group["name"] == "multiply_lr_params":
  297. param_group['lr'] *= multiply_head_lr
  298. return param_groups
  299. def _separate_lr_multiply_params(self):
  300. """
  301. Separate backbone params from the rest.
  302. :return: iterators of groups named_parameters.
  303. """
  304. multiply_lr_params, no_multiply_params = {}, {}
  305. for name, param in self.named_parameters():
  306. if "encoder.backbone" in name:
  307. no_multiply_params[name] = param
  308. else:
  309. multiply_lr_params[name] = param
  310. return multiply_lr_params.items(), no_multiply_params.items()
  311. def prep_model_for_conversion(self, input_size: Union[tuple, list], stride_ratio: int = 32, **kwargs):
  312. super().prep_model_for_conversion(input_size, **kwargs)
  313. if isinstance(self.encoder.context_module, SPPM):
  314. self.encoder.context_module.prep_model_for_conversion(input_size=input_size, stride_ratio=stride_ratio)
  315. class PPLiteSegB(PPLiteSegBase):
  316. def __init__(self, arch_params: HpmStruct):
  317. backbone = STDC2Backbone(in_channels=get_param(arch_params, "in_channels", 3),
  318. out_down_ratios=[8, 16, 32])
  319. super().__init__(num_classes=get_param(arch_params, "num_classes"),
  320. backbone=backbone,
  321. projection_channels_list=[96, 128, 128],
  322. sppm_inter_channels=128,
  323. sppm_out_channels=128,
  324. sppm_pool_sizes=[1, 2, 4],
  325. sppm_upsample_mode="bilinear",
  326. align_corners=False,
  327. decoder_up_factors=[1, 2, 2],
  328. decoder_channels=[128, 96, 64],
  329. decoder_upsample_mode="bilinear",
  330. head_scale_factor=8,
  331. head_upsample_mode="bilinear",
  332. head_mid_channels=64,
  333. dropout=get_param(arch_params, "dropout", 0.),
  334. use_aux_heads=get_param(arch_params, "use_aux_heads", False),
  335. aux_hidden_channels=[32, 64, 64],
  336. aux_scale_factors=[8, 16, 32])
  337. class PPLiteSegT(PPLiteSegBase):
  338. def __init__(self, arch_params: HpmStruct):
  339. backbone = STDC1Backbone(in_channels=get_param(arch_params, "in_channels", 3),
  340. out_down_ratios=[8, 16, 32])
  341. super().__init__(num_classes=get_param(arch_params, "num_classes"),
  342. backbone=backbone,
  343. projection_channels_list=[64, 128, 128],
  344. sppm_inter_channels=128,
  345. sppm_out_channels=128,
  346. sppm_pool_sizes=[1, 2, 4],
  347. sppm_upsample_mode="bilinear",
  348. align_corners=False,
  349. decoder_up_factors=[1, 2, 2],
  350. decoder_channels=[128, 64, 32],
  351. decoder_upsample_mode="bilinear",
  352. head_scale_factor=8,
  353. head_upsample_mode="bilinear",
  354. head_mid_channels=32,
  355. dropout=get_param(arch_params, "dropout", 0.),
  356. use_aux_heads=get_param(arch_params, "use_aux_heads", False),
  357. aux_hidden_channels=[32, 64, 64],
  358. aux_scale_factors=[8, 16, 32])
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
  1. from super_gradients.training.models.sg_module import SgModule
  2. import torch.nn as nn
  3. from abc import abstractmethod, ABC
  4. class SegmentationModule(SgModule, ABC):
  5. """
  6. Base SegmentationModule class
  7. """
  8. def __init__(self, use_aux_heads: bool):
  9. super().__init__()
  10. self._use_aux_heads = use_aux_heads
  11. @property
  12. def use_aux_heads(self):
  13. return self._use_aux_heads
  14. @use_aux_heads.setter
  15. def use_aux_heads(self, use_aux: bool):
  16. """
  17. public setter for self._use_aux_heads, called every time an assignment to self.use_aux_heads is applied.
  18. if use_aux is False, `_remove_auxiliary_heads` is called to delete auxiliary and detail heads.
  19. if use_aux is True, and self._use_aux_heads was already set to False a ValueError is raised, recreating
  20. aux and detail heads outside init method is not allowed, and the module should be recreated.
  21. """
  22. if use_aux is True and self._use_aux_heads is False:
  23. raise ValueError("Cant turn use_aux_heads from False to True. Try initiating the module again with"
  24. " `use_aux_heads=True` or initiating the auxiliary heads modules manually.")
  25. if not use_aux:
  26. self._remove_auxiliary_heads()
  27. self._use_aux_heads = use_aux
  28. def prep_model_for_conversion(self, *args, **kwargs):
  29. # set to false and delete auxiliary and detail heads modules.
  30. self.use_aux_heads = False
  31. @abstractmethod
  32. def _remove_auxiliary_heads(self):
  33. raise NotImplementedError()
  34. @property
  35. @abstractmethod
  36. def backbone(self) -> nn.Module:
  37. """
  38. For SgModel load_backbone compatibility.
  39. """
  40. raise NotImplementedError()
  41. def init_params(self):
  42. for m in self.modules():
  43. if isinstance(m, nn.Conv2d):
  44. nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity="relu")
  45. if m.bias is not None:
  46. nn.init.constant_(m.bias, 0)
  47. elif isinstance(m, nn.BatchNorm2d):
  48. nn.init.constant_(m.weight, 1)
  49. nn.init.constant_(m.bias, 0)
Discard
@@ -39,8 +39,12 @@ MODEL_URLS = {"regnetY800_imagenet": "https://deci-pretrained-models.s3.amazonaw
               "yolox_m_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_m_coco/average_model.pth",
               "yolox_m_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_m_coco/average_model.pth",
               "yolox_l_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_l_coco/average_model.pth",
               "yolox_l_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_l_coco/average_model.pth",
               "yolox_t_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_tiny_coco/ckpt_best.pth",
               "yolox_t_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_tiny_coco/ckpt_best.pth",
-              "yolox_n_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_n_coco/ckpt_best.pth"
+              "yolox_n_coco": "https://deci-pretrained-models.s3.amazonaws.com/yolox_coco/yolox_n_coco/ckpt_best.pth",
 
 
+              "pp_lite_t_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg50/average_model.pth",
+              "pp_lite_t_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg75/average_model.pth",
+              "pp_lite_b_seg50_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg50/average_model.pth",
+              "pp_lite_b_seg75_cityscapes": "https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg75/average_model.pth",
               }
               }
 
 
 PRETRAINED_NUM_CLASSES = {"imagenet": 1000,
 PRETRAINED_NUM_CLASSES = {"imagenet": 1000,
Discard
@@ -1,9 +1,11 @@
 from collections import OrderedDict
 from collections import OrderedDict
 import copy
 import copy
-from typing import List, Union, Tuple
+from typing import List, Union, Tuple, Optional
 import torch
 import torch
 from torch import nn
 from torch import nn
 
 
+from super_gradients.common import UpsampleMode
+
 
 
 class MultiOutputModule(nn.Module):
 class MultiOutputModule(nn.Module):
     """
     """
@@ -219,3 +221,23 @@ class NormalizationAdapter(torch.nn.Module):
     def forward(self, x):
     def forward(self, x):
         x = (x + self.additive) * self.multiplier
         x = (x + self.additive) * self.multiplier
         return x
         return x
+
+
+def make_upsample_module(scale_factor: int,
+                         upsample_mode: Union[str, UpsampleMode],
+                         align_corners: Optional[bool] = None):
+    """
+    Factory method for creating upsampling modules.
+    :param scale_factor: upsample scale factor
+    :param upsample_mode: see UpsampleMode for supported options.
+    :return: nn.Module
+    """
+    upsample_mode = upsample_mode.value if isinstance(upsample_mode, UpsampleMode) else upsample_mode
+    if upsample_mode == UpsampleMode.NEAREST.value:
+        # Prevent ValueError when passing align_corners with nearest mode.
+        module = nn.Upsample(scale_factor=scale_factor, mode=upsample_mode)
+    elif upsample_mode in [UpsampleMode.BILINEAR.value, UpsampleMode.BICUBIC.value]:
+        module = nn.Upsample(scale_factor=scale_factor, mode=upsample_mode, align_corners=align_corners)
+    else:
+        raise NotImplementedError(f"Upsample mode: `{upsample_mode}` is not supported.")
+    return module
Discard
@@ -11,7 +11,6 @@ import os
 import shutil
 import shutil
 from super_gradients.training.utils.ssd_utils import SSDPostPredictCallback
 from super_gradients.training.utils.ssd_utils import SSDPostPredictCallback
 from super_gradients.training.models.detection_models.ssd import DEFAULT_SSD_LITE_MOBILENET_V2_ARCH_PARAMS
 from super_gradients.training.models.detection_models.ssd import DEFAULT_SSD_LITE_MOBILENET_V2_ARCH_PARAMS
-import torchvision.transforms as transforms
 from super_gradients.training.losses.ddrnet_loss import DDRNetLoss
 from super_gradients.training.losses.ddrnet_loss import DDRNetLoss
 from super_gradients.training.metrics import DetectionMetrics
 from super_gradients.training.metrics import DetectionMetrics
 from super_gradients.training.transforms.transforms import Rescale
 from super_gradients.training.transforms.transforms import Rescale
@@ -232,7 +231,9 @@ class PretrainedModelsTest(unittest.TestCase):
         self.cityscapes_pretrained_arch_params = {
         self.cityscapes_pretrained_arch_params = {
             "ddrnet_23": {"aux_head": True, "sync_bn": True},
             "ddrnet_23": {"aux_head": True, "sync_bn": True},
             "regseg48": {},
             "regseg48": {},
-            "stdc": {"use_aux_heads": True, "aux_head": True}}
+            "stdc": {"use_aux_heads": True, "aux_head": True},
+            "pplite_seg": {"use_aux_heads": True},
+        }
 
 
         self.cityscapes_pretrained_ckpt_params = {"pretrained_weights": "cityscapes"}
         self.cityscapes_pretrained_ckpt_params = {"pretrained_weights": "cityscapes"}
         self.cityscapes_pretrained_mious = {"ddrnet_23": 0.8026,
         self.cityscapes_pretrained_mious = {"ddrnet_23": 0.8026,
@@ -241,7 +242,11 @@ class PretrainedModelsTest(unittest.TestCase):
                                             "stdc1_seg75": 0.7687,
                                             "stdc1_seg75": 0.7687,
                                             "stdc2_seg50": 0.7644,
                                             "stdc2_seg50": 0.7644,
                                             "stdc2_seg75": 0.7893,
                                             "stdc2_seg75": 0.7893,
-                                            "regseg48": 0.7815}
+                                            "regseg48": 0.7815,
+                                            "pp_lite_t_seg50": 0.7492,
+                                            "pp_lite_t_seg75": 0.7756,
+                                            "pp_lite_b_seg50": 0.7648,
+                                            "pp_lite_b_seg75": 0.7852}
 
 
         self.cityscapes_dataset = CityscapesDatasetInterface(dataset_params={
         self.cityscapes_dataset = CityscapesDatasetInterface(dataset_params={
             "batch_size": 3,
             "batch_size": 3,
@@ -249,22 +254,22 @@ class PretrainedModelsTest(unittest.TestCase):
             "dataset_dir": "/data/cityscapes/",
             "dataset_dir": "/data/cityscapes/",
             "crop_size": 1024,
             "crop_size": 1024,
             "img_size": 1024,
             "img_size": 1024,
-            "image_mask_transforms_aug": transforms.Compose([]),
-            "image_mask_transforms": transforms.Compose([])  # no transform for evaluation
+            "image_mask_transforms_aug": [],
+            "image_mask_transforms": []  # no transform for evaluation
         }, cache_labels=False)
         }, cache_labels=False)
 
 
         self.cityscapes_dataset_rescaled50 = CityscapesDatasetInterface(dataset_params={
         self.cityscapes_dataset_rescaled50 = CityscapesDatasetInterface(dataset_params={
             "batch_size": 3,
             "batch_size": 3,
             "val_batch_size": 3,
             "val_batch_size": 3,
-            "image_mask_transforms_aug": transforms.Compose([]),
-            "image_mask_transforms": transforms.Compose([Rescale(scale_factor=0.5)])  # no transform for evaluation
+            "image_mask_transforms_aug": [],
+            "image_mask_transforms": [Rescale(scale_factor=0.5)]  # no transform for evaluation
         }, cache_labels=False)
         }, cache_labels=False)
 
 
         self.cityscapes_dataset_rescaled75 = CityscapesDatasetInterface(dataset_params={
         self.cityscapes_dataset_rescaled75 = CityscapesDatasetInterface(dataset_params={
             "batch_size": 3,
             "batch_size": 3,
             "val_batch_size": 3,
             "val_batch_size": 3,
-            "image_mask_transforms_aug": transforms.Compose([]),
-            "image_mask_transforms": transforms.Compose([Rescale(scale_factor=0.75)])  # no transform for evaluation
+            "image_mask_transforms_aug": [],
+            "image_mask_transforms": [Rescale(scale_factor=0.75)]  # no transform for evaluation
         }, cache_labels=False)
         }, cache_labels=False)
 
 
         self.transfer_segmentation_dataset = SegmentationTestDatasetInterface(image_size=1024)
         self.transfer_segmentation_dataset = SegmentationTestDatasetInterface(image_size=1024)
@@ -788,6 +793,50 @@ class PretrainedModelsTest(unittest.TestCase):
                            metrics_progress_verbose=True)[0].cpu().item()
                            metrics_progress_verbose=True)[0].cpu().item()
         self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["stdc2_seg75"], delta=0.001)
         self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["stdc2_seg75"], delta=0.001)
 
 
+    def test_pretrained_pplite_t_seg50_cityscapes(self):
+        trainer = Trainer('cityscapes_pretrained_pplite_t_seg50', model_checkpoints_location='local',
+                          multi_gpu=MultiGPUMode.OFF)
+        trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled50, data_loader_num_workers=8)
+        trainer.build_model("pp_lite_t_seg50", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
+                            checkpoint_params=self.cityscapes_pretrained_ckpt_params)
+        res = trainer.test(test_loader=self.cityscapes_dataset_rescaled50.val_loader,
+                           test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
+                           metrics_progress_verbose=True)[0].cpu().item()
+        self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["pp_lite_t_seg50"], delta=0.001)
+
+    def test_pretrained_pplite_t_seg75_cityscapes(self):
+        trainer = Trainer('cityscapes_pretrained_pplite_t_seg75', model_checkpoints_location='local',
+                          multi_gpu=MultiGPUMode.OFF)
+        trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled75, data_loader_num_workers=8)
+        trainer.build_model("pp_lite_t_seg75", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
+                            checkpoint_params=self.cityscapes_pretrained_ckpt_params)
+        res = trainer.test(test_loader=self.cityscapes_dataset_rescaled75.val_loader,
+                           test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
+                           metrics_progress_verbose=True)[0].cpu().item()
+        self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["pp_lite_t_seg75"], delta=0.001)
+
+    def test_pretrained_pplite_b_seg50_cityscapes(self):
+        trainer = Trainer('cityscapes_pretrained_pplite_b_seg50', model_checkpoints_location='local',
+                          multi_gpu=MultiGPUMode.OFF)
+        trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled50, data_loader_num_workers=8)
+        trainer.build_model("pp_lite_b_seg50", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
+                            checkpoint_params=self.cityscapes_pretrained_ckpt_params)
+        res = trainer.test(test_loader=self.cityscapes_dataset_rescaled50.val_loader,
+                           test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
+                           metrics_progress_verbose=True)[0].cpu().item()
+        self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["pp_lite_b_seg50"], delta=0.001)
+
+    def test_pretrained_pplite_b_seg75_cityscapes(self):
+        trainer = Trainer('cityscapes_pretrained_pplite_b_seg75', model_checkpoints_location='local',
+                          multi_gpu=MultiGPUMode.OFF)
+        trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled75, data_loader_num_workers=8)
+        trainer.build_model("pp_lite_b_seg75", arch_params=self.cityscapes_pretrained_arch_params["pplite_seg"],
+                            checkpoint_params=self.cityscapes_pretrained_ckpt_params)
+        res = trainer.test(test_loader=self.cityscapes_dataset_rescaled75.val_loader,
+                           test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
+                           metrics_progress_verbose=True)[0].cpu().item()
+        self.assertAlmostEqual(res, self.cityscapes_pretrained_mious["pp_lite_b_seg75"], delta=0.001)
+
     def test_transfer_learning_stdc2_seg75_cityscapes(self):
     def test_transfer_learning_stdc2_seg75_cityscapes(self):
         trainer = Trainer('cityscapes_pretrained_stdc2_seg75_transfer_learning', model_checkpoints_location='local',
         trainer = Trainer('cityscapes_pretrained_stdc2_seg75_transfer_learning', model_checkpoints_location='local',
                           multi_gpu=MultiGPUMode.OFF)
                           multi_gpu=MultiGPUMode.OFF)
Discard