Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#309 Fix scale between rescaling batches

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-221-make_multiscale_keep_state
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
  1. import unittest
  2. from super_gradients import SgModel, \
  3. ClassificationTestDatasetInterface
  4. from super_gradients.training.metrics import Accuracy, Top5
  5. from super_gradients.training.models import ResNet18
  6. class TrainWithPreciseBNTest(unittest.TestCase):
  7. """
  8. Unit test for training with precise_bn.
  9. """
  10. def test_train_with_precise_bn_explicit_size(self):
  11. model = SgModel("test_train_with_precise_bn_explicit_size", model_checkpoints_location='local')
  12. dataset_params = {"batch_size": 10}
  13. dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
  14. model.connect_dataset_interface(dataset)
  15. net = ResNet18(num_classes=5, arch_params={})
  16. model.build_model(net)
  17. train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  18. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
  19. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  20. "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
  21. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  22. "greater_metric_to_watch_is_better": True,
  23. "precise_bn": True, "precise_bn_batch_size": 100}
  24. model.train(train_params)
  25. def test_train_with_precise_bn_implicit_size(self):
  26. model = SgModel("test_train_with_precise_bn_implicit_size", model_checkpoints_location='local')
  27. dataset_params = {"batch_size": 10}
  28. dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
  29. model.connect_dataset_interface(dataset)
  30. net = ResNet18(num_classes=5, arch_params={})
  31. model.build_model(net)
  32. train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  33. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
  34. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  35. "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
  36. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  37. "greater_metric_to_watch_is_better": True,
  38. "precise_bn": True}
  39. model.train(train_params)
  40. if __name__ == '__main__':
  41. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file