1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
- import unittest
- from super_gradients import SgModel, \
- ClassificationTestDatasetInterface
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.models import ResNet18
- class TrainWithPreciseBNTest(unittest.TestCase):
- """
- Unit test for training with precise_bn.
- """
- def test_train_with_precise_bn_explicit_size(self):
- model = SgModel("test_train_with_precise_bn_explicit_size", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- model.build_model(net)
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "precise_bn": True, "precise_bn_batch_size": 100}
- model.train(train_params)
- def test_train_with_precise_bn_implicit_size(self):
- model = SgModel("test_train_with_precise_bn_implicit_size", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- model.build_model(net)
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "precise_bn": True}
- model.train(train_params)
- if __name__ == '__main__':
- unittest.main()
|