Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#309 Fix scale between rescaling batches

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-221-make_multiscale_keep_state
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
  1. import unittest
  2. from super_gradients.training import SgModel
  3. from super_gradients.training.metrics import Accuracy, Top5
  4. from super_gradients.training.utils.utils import check_models_have_same_weights
  5. from super_gradients.training.datasets import ClassificationTestDatasetInterface
  6. from super_gradients.training.models import LeNet
  7. class LoadCheckpointWithEmaTest(unittest.TestCase):
  8. def setUp(self) -> None:
  9. self.dataset_params = {"batch_size": 4}
  10. self.dataset = ClassificationTestDatasetInterface(dataset_params=self.dataset_params)
  11. self.train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  12. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": 'SGD',
  13. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  14. "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
  15. "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
  16. "greater_metric_to_watch_is_better": True, "ema": True}
  17. def test_ema_ckpt_reload(self):
  18. # Define Model
  19. net = LeNet()
  20. model = SgModel("ema_ckpt_test", model_checkpoints_location='local')
  21. model.connect_dataset_interface(self.dataset)
  22. model.build_model(net, arch_params={'num_classes': 10})
  23. model.train(self.train_params)
  24. ema_model = model.ema_model.ema
  25. net = LeNet()
  26. model = SgModel("ema_ckpt_test", model_checkpoints_location='local')
  27. model.build_model(net, arch_params={'num_classes': 10}, checkpoint_params={'load_checkpoint': True})
  28. model.connect_dataset_interface(self.dataset)
  29. # TRAIN FOR 0 EPOCHS JUST TO SEE THAT WHEN CONTINUING TRAINING EMA MODEL HAS BEEN SAVED CORRECTLY
  30. model.train(self.train_params)
  31. reloaded_ema_model = model.ema_model.ema
  32. # ASSERT RELOADED EMA MODEL HAS THE SAME WEIGHTS AS THE EMA MODEL SAVED IN FIRST PART OF TRAINING
  33. assert check_models_have_same_weights(ema_model, reloaded_ema_model)
  34. if __name__ == '__main__':
  35. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file