1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
- import unittest
- from super_gradients.training import SgModel
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.utils.utils import check_models_have_same_weights
- from super_gradients.training.datasets import ClassificationTestDatasetInterface
- from super_gradients.training.models import LeNet
- class LoadCheckpointWithEmaTest(unittest.TestCase):
- def setUp(self) -> None:
- self.dataset_params = {"batch_size": 4}
- self.dataset = ClassificationTestDatasetInterface(dataset_params=self.dataset_params)
- self.train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": True}
- def test_ema_ckpt_reload(self):
- # Define Model
- net = LeNet()
- model = SgModel("ema_ckpt_test", model_checkpoints_location='local')
- model.connect_dataset_interface(self.dataset)
- model.build_model(net, arch_params={'num_classes': 10})
- model.train(self.train_params)
- ema_model = model.ema_model.ema
- net = LeNet()
- model = SgModel("ema_ckpt_test", model_checkpoints_location='local')
- model.build_model(net, arch_params={'num_classes': 10}, checkpoint_params={'load_checkpoint': True})
- model.connect_dataset_interface(self.dataset)
- # TRAIN FOR 0 EPOCHS JUST TO SEE THAT WHEN CONTINUING TRAINING EMA MODEL HAS BEEN SAVED CORRECTLY
- model.train(self.train_params)
- reloaded_ema_model = model.ema_model.ema
- # ASSERT RELOADED EMA MODEL HAS THE SAME WEIGHTS AS THE EMA MODEL SAVED IN FIRST PART OF TRAINING
- assert check_models_have_same_weights(ema_model, reloaded_ema_model)
- if __name__ == '__main__':
- unittest.main()
|