1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
- import unittest
- from super_gradients import SgModel, ClassificationTestDatasetInterface
- import torch
- from torch.utils.data import TensorDataset, DataLoader
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.exceptions.sg_model_exceptions import IllegalDataloaderInitialization
- class InitializeWithDataloadersTest(unittest.TestCase):
- def setUp(self):
- self.testcase_classes = [0, 1, 2, 3, 4]
- train_size, valid_size, test_size = 160, 20, 20
- channels, width, height = 3, 224, 224
- inp = torch.randn((train_size, channels, width, height))
- label = torch.randint(0, len(self.testcase_classes), size=(train_size,))
- self.testcase_trainloader = DataLoader(TensorDataset(inp, label))
- inp = torch.randn((valid_size, channels, width, height))
- label = torch.randint(0, len(self.testcase_classes), size=(valid_size,))
- self.testcase_validloader = DataLoader(TensorDataset(inp, label))
- inp = torch.randn((test_size, channels, width, height))
- label = torch.randint(0, len(self.testcase_classes), size=(test_size,))
- self.testcase_testloader = DataLoader(TensorDataset(inp, label))
- def test_interface_was_not_broken(self):
- model = SgModel("test_interface", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- model.build_model("efficientnet_b0")
- train_params = {"max_epochs": 1, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": torch.nn.CrossEntropyLoss(),
- "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- def test_initialization_rules(self):
- self.assertRaises(IllegalDataloaderInitialization, SgModel, "test_name", model_checkpoints_location='local',
- train_loader=self.testcase_trainloader)
- self.assertRaises(IllegalDataloaderInitialization, SgModel, "test_name", model_checkpoints_location='local',
- valid_loader=self.testcase_validloader)
- self.assertRaises(IllegalDataloaderInitialization, SgModel, "test_name", model_checkpoints_location='local',
- classes=self.testcase_classes)
- self.assertRaises(IllegalDataloaderInitialization, SgModel, "test_name", model_checkpoints_location='local',
- train_loader=self.testcase_trainloader, valid_loader=self.testcase_validloader)
- self.assertRaises(IllegalDataloaderInitialization, SgModel, "test_name", model_checkpoints_location='local',
- train_loader=self.testcase_trainloader, classes=self.testcase_classes)
- self.assertRaises(IllegalDataloaderInitialization, SgModel, "test_name", model_checkpoints_location='local',
- valid_loader=self.testcase_validloader, classes=self.testcase_classes)
- SgModel("test_name", model_checkpoints_location='local', train_loader=self.testcase_trainloader,
- valid_loader=self.testcase_validloader, classes=self.testcase_classes)
- SgModel("test_name", model_checkpoints_location='local', train_loader=self.testcase_trainloader,
- valid_loader=self.testcase_validloader, test_loader=self.testcase_testloader,
- classes=self.testcase_classes)
- def test_train_with_dataloaders(self):
- model = SgModel(experiment_name="test_name", model_checkpoints_location="local",
- train_loader=self.testcase_trainloader, valid_loader=self.testcase_validloader,
- classes=self.testcase_classes)
- model.build_model("resnet18")
- model.train(training_params={"max_epochs": 2,
- "lr_updates": [5, 6, 12],
- "lr_decay_factor": 0.01,
- "lr_mode": "step",
- "initial_lr": 0.01,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "optimizer_params": {"weight_decay": 1e-5, "momentum": 0.9},
- "train_metrics_list": [Accuracy()],
- "valid_metrics_list": [Accuracy()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True})
- self.assertTrue(0 < model.best_metric.item() < 1)
- if __name__ == '__main__':
- unittest.main()
|