Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#309 Fix scale between rescaling batches

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-221-make_multiscale_keep_state
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
  1. import unittest
  2. import super_gradients
  3. from super_gradients.training.datasets import PascalVOCDetectionDataset
  4. from super_gradients.training.transforms import DetectionMosaic, DetectionPaddedRescale, DetectionTargetsFormatTransform
  5. from super_gradients.training.utils.detection_utils import DetectionTargetsFormat
  6. from super_gradients.training.exceptions.dataset_exceptions import EmptyDatasetException
  7. class DatasetIntegrationTest(unittest.TestCase):
  8. def setUp(self) -> None:
  9. super_gradients.init_trainer()
  10. self.batch_size = 64
  11. self.pascal_class_inclusion_lists = [['aeroplane', 'bicycle'],
  12. ['bird', 'boat', 'bottle', 'bus'],
  13. ['pottedplant'],
  14. ['person']]
  15. transforms = [DetectionMosaic(input_dim=(640, 640), prob=0.8),
  16. DetectionPaddedRescale(input_dim=(640, 640), max_targets=120),
  17. DetectionTargetsFormatTransform(output_format=DetectionTargetsFormat.XYXY_LABEL)]
  18. self.pascal_base_config = dict(data_dir='/home/louis.dupont/data/pascal_unified_coco_format/',
  19. images_sub_directory='images/train2012/',
  20. input_dim=(640, 640),
  21. transforms=transforms)
  22. def test_multiple_pascal_dataset_subclass_before_transforms(self):
  23. """Run test_pascal_dataset_subclass on multiple inclusion lists"""
  24. for class_inclusion_list in self.pascal_class_inclusion_lists:
  25. dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list, **self.pascal_base_config)
  26. dataset.plot(max_samples_per_plot=16, n_plots=1, plot_transformed_data=False)
  27. def test_multiple_pascal_dataset_subclass_after_transforms(self):
  28. """Run test_pascal_dataset_subclass on multiple inclusion lists"""
  29. for class_inclusion_list in self.pascal_class_inclusion_lists:
  30. dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list, **self.pascal_base_config)
  31. dataset.plot(max_samples_per_plot=16, n_plots=1, plot_transformed_data=True)
  32. def test_subclass_non_existing_class(self):
  33. """Check that EmptyDatasetException is raised when unknown label."""
  34. with self.assertRaises(ValueError):
  35. PascalVOCDetectionDataset(class_inclusion_list=["new_class"], **self.pascal_base_config)
  36. def test_sub_sampling_dataset(self):
  37. """Check that sub sampling works."""
  38. full_dataset = PascalVOCDetectionDataset(**self.pascal_base_config)
  39. with self.assertRaises(EmptyDatasetException):
  40. PascalVOCDetectionDataset(max_num_samples=0, **self.pascal_base_config)
  41. for max_num_samples in [1, 10, 1000, 1_000_000]:
  42. sampled_dataset = PascalVOCDetectionDataset(max_num_samples=max_num_samples, **self.pascal_base_config)
  43. self.assertEqual(len(sampled_dataset), min(max_num_samples, len(full_dataset)))
  44. if __name__ == '__main__':
  45. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file