1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
- import unittest
- from super_gradients.training import SgModel
- from super_gradients.training.metrics import Accuracy
- from super_gradients.training.datasets import ClassificationTestDatasetInterface
- from super_gradients.training.utils.callbacks import PhaseCallback, Phase, PhaseContext
- import torch
- class TestInputSizesCallback(PhaseCallback):
- """
- Phase callback that collects the input shapes rates in lr_placeholder at the end of each forward pass.
- """
- def __init__(self, shapes_placeholder):
- super(TestInputSizesCallback, self).__init__(Phase.TRAIN_BATCH_END)
- self.shapes_placeholder = shapes_placeholder
- def __call__(self, context: PhaseContext):
- self.shapes_placeholder.append(context.inputs.shape)
- def test_forward_pass_prep_fn(inputs, targets, *args, **kwargs):
- inputs = torch.nn.functional.interpolate(
- inputs, size=(50, 50), mode="bilinear", align_corners=False
- )
- return inputs, targets
- class ForwardpassPrepFNTest(unittest.TestCase):
- def setUp(self) -> None:
- self.dataset_params = {"batch_size": 4}
- self.dataset = ClassificationTestDatasetInterface(dataset_params=self.dataset_params)
- self.arch_params = {'num_classes': 10}
- def test_resizing_with_forward_pass_prep_fn(self):
- # Define Model
- model = SgModel("ForwardpassPrepFNTest")
- model.connect_dataset_interface(self.dataset)
- model.build_model("resnet18", arch_params=self.arch_params)
- sizes = []
- phase_callbacks = [TestInputSizesCallback(sizes)]
- train_params = {"max_epochs": 2, "cosine_final_lr_ratio": 0.2, "lr_mode": "cosine",
- "lr_cooldown_epochs": 2,
- "lr_warmup_epochs": 3, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks,
- "pre_prediction_callback": test_forward_pass_prep_fn}
- model.train(train_params)
- # ALTHOUGH NOT SEEN IN HERE, THE 4TH EPOCH USES LR=1, SO THIS IS THE EXPECTED LIST AS WE COLLECT
- # THE LRS AFTER THE UPDATE
- sizes = list(map(lambda size: size[2], sizes))
- self.assertTrue(all(map(lambda size: size == 50, sizes)))
|