1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
- import unittest
- import torch
- from super_gradients import ClassificationTestDatasetInterface, SgModel
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.models import ResNet18
- class FactoriesTest(unittest.TestCase):
- def test_training_with_factories(self):
- model = SgModel("test_train_with_factories", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = {"classification_test_dataset": {"dataset_params": dataset_params}}
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- model.build_model(net)
- train_params = {"max_epochs": 2,
- "lr_updates": [1],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "torch.optim.ASGD", # use an optimizer by factory
- "criterion_params": {},
- "optimizer_params": {"lambd": 0.0001, "alpha": 0.75},
- "train_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
- "valid_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- model.train(train_params)
- self.assertIsInstance(model.train_metrics.Accuracy, Accuracy)
- self.assertIsInstance(model.valid_metrics.Top5, Top5)
- self.assertIsInstance(model.dataset_interface, ClassificationTestDatasetInterface)
- self.assertIsInstance(model.optimizer, torch.optim.ASGD)
- if __name__ == '__main__':
- unittest.main()
|