1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
- import unittest
- from super_gradients.training.utils.utils import HpmStruct
- from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ClassificationTestDatasetInterface
- from super_gradients import SgModel
- from super_gradients.training.metrics import Accuracy, Top5
- class TestViT(unittest.TestCase):
- def setUp(self):
- self.arch_params = HpmStruct(**{"image_size": (224, 224), "patch_size": (16, 16), "num_classes": 10})
- self.dataset = ClassificationTestDatasetInterface(dataset_params={"batch_size": 16})
- self.train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy"}
- def test_train_vit(self):
- """
- Validate vit_base
- """
- model = SgModel("test_vit_base", device='cpu')
- model.connect_dataset_interface(self.dataset, data_loader_num_workers=8)
- model.build_model('vit_base', load_checkpoint=False)
- model.train(training_params=self.train_params)
- if __name__ == '__main__':
- unittest.main()
|