Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#286 Sg/yolox readme

Merged
GitHub User merged 1 commits into Deci-AI:master from deci-ai:SG/yolox_readme
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.metrics.detection_metrics &mdash; SuperGradients 1.0 documentation</title>
  7. <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  9. <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
  10. <!--[if lt IE 9]>
  11. <script src="../../../../_static/js/html5shiv.min.js"></script>
  12. <![endif]-->
  13. <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
  14. <script src="../../../../_static/jquery.js"></script>
  15. <script src="../../../../_static/underscore.js"></script>
  16. <script src="../../../../_static/doctools.js"></script>
  17. <script src="../../../../_static/js/theme.js"></script>
  18. <link rel="index" title="Index" href="../../../../genindex.html" />
  19. <link rel="search" title="Search" href="../../../../search.html" />
  20. </head>
  21. <body class="wy-body-for-nav">
  22. <div class="wy-grid-for-nav">
  23. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  24. <div class="wy-side-scroll">
  25. <div class="wy-side-nav-search" >
  26. <a href="../../../../index.html" class="icon icon-home"> SuperGradients
  27. </a>
  28. <div role="search">
  29. <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
  30. <input type="text" name="q" placeholder="Search docs" />
  31. <input type="hidden" name="check_keywords" value="yes" />
  32. <input type="hidden" name="area" value="default" />
  33. </form>
  34. </div>
  35. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  36. <p class="caption"><span class="caption-text">SuperGradients</span></p>
  37. <ul>
  38. <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
  39. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common</a></li>
  40. <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training</a></li>
  41. </ul>
  42. </div>
  43. </div>
  44. </nav>
  45. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  46. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  47. <a href="../../../../index.html">SuperGradients</a>
  48. </nav>
  49. <div class="wy-nav-content">
  50. <div class="rst-content">
  51. <div role="navigation" aria-label="Page navigation">
  52. <ul class="wy-breadcrumbs">
  53. <li><a href="../../../../index.html" class="icon icon-home"></a> &raquo;</li>
  54. <li><a href="../../../index.html">Module code</a> &raquo;</li>
  55. <li>super_gradients.training.metrics.detection_metrics</li>
  56. <li class="wy-breadcrumbs-aside">
  57. </li>
  58. </ul>
  59. <hr/>
  60. </div>
  61. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  62. <div itemprop="articleBody">
  63. <h1>Source code for super_gradients.training.metrics.detection_metrics</h1><div class="highlight"><pre>
  64. <span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
  65. <span class="kn">import</span> <span class="nn">torch</span>
  66. <span class="kn">from</span> <span class="nn">torchmetrics</span> <span class="kn">import</span> <span class="n">Metric</span>
  67. <span class="kn">from</span> <span class="nn">super_gradients.training.utils.detection_utils</span> <span class="kn">import</span> <span class="n">calc_batch_prediction_accuracy</span><span class="p">,</span> <span class="n">DetectionPostPredictionCallback</span><span class="p">,</span> \
  68. <span class="n">IouThreshold</span>
  69. <span class="kn">import</span> <span class="nn">super_gradients</span>
  70. <div class="viewcode-block" id="compute_ap"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.detection_metrics.compute_ap">[docs]</a><span class="k">def</span> <span class="nf">compute_ap</span><span class="p">(</span><span class="n">recall</span><span class="p">,</span> <span class="n">precision</span><span class="p">,</span> <span class="n">method</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;interp&#39;</span><span class="p">):</span>
  71. <span class="sd">&quot;&quot;&quot; Compute the average precision, given the recall and precision curves.</span>
  72. <span class="sd"> Source: https://github.com/rbgirshick/py-faster-rcnn.</span>
  73. <span class="sd"> # Arguments</span>
  74. <span class="sd"> :param recall: The recall curve - ndarray [1, points in curve]</span>
  75. <span class="sd"> :param precision: The precision curve - ndarray [1, points in curve]</span>
  76. <span class="sd"> :param method: &#39;continuous&#39;, &#39;interp&#39;</span>
  77. <span class="sd"> # Returns</span>
  78. <span class="sd"> The average precision as computed in py-faster-rcnn.</span>
  79. <span class="sd"> &quot;&quot;&quot;</span>
  80. <span class="c1"># IN ORDER TO CALCULATE, WE HAVE TO MAKE SURE THE CURVES GO ALL THE WAY TO THE AXES (FROM X=0 TO Y=0)</span>
  81. <span class="c1"># THIS IS HOW IT IS COMPUTED IN ORIGINAL REPO - A MORE CORRECT COMPUTE WOULD BE ([0.], recall, [recall[-1] + 1E-3])</span>
  82. <span class="n">wrapped_recall</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(([</span><span class="mf">0.</span><span class="p">],</span> <span class="n">recall</span><span class="p">,</span> <span class="p">[</span><span class="mf">1.0</span><span class="p">]))</span>
  83. <span class="n">wrapped_precision</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(([</span><span class="mf">1.</span><span class="p">],</span> <span class="n">precision</span><span class="p">,</span> <span class="p">[</span><span class="mf">0.</span><span class="p">]))</span>
  84. <span class="c1"># COMPUTE THE PRECISION ENVELOPE</span>
  85. <span class="n">wrapped_precision</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">flip</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">maximum</span><span class="o">.</span><span class="n">accumulate</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">flip</span><span class="p">(</span><span class="n">wrapped_precision</span><span class="p">)))</span>
  86. <span class="c1"># INTEGRATE AREA UNDER CURVE</span>
  87. <span class="k">if</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">&#39;interp&#39;</span><span class="p">:</span>
  88. <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">101</span><span class="p">)</span> <span class="c1"># 101-point interp (COCO)</span>
  89. <span class="n">ap</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">trapz</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">interp</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">wrapped_recall</span><span class="p">,</span> <span class="n">wrapped_precision</span><span class="p">),</span> <span class="n">x</span><span class="p">)</span> <span class="c1"># integrate</span>
  90. <span class="k">else</span><span class="p">:</span> <span class="c1"># &#39;continuous&#39;</span>
  91. <span class="n">i</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">wrapped_recall</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="o">!=</span> <span class="n">wrapped_recall</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])[</span><span class="mi">0</span><span class="p">]</span> <span class="c1"># points where x axis (recall) changes</span>
  92. <span class="n">ap</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">((</span><span class="n">wrapped_recall</span><span class="p">[</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">wrapped_recall</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="o">*</span> <span class="n">wrapped_precision</span><span class="p">[</span><span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">])</span> <span class="c1"># area under curve</span>
  93. <span class="k">return</span> <span class="n">ap</span></div>
  94. <div class="viewcode-block" id="ap_per_class"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.detection_metrics.ap_per_class">[docs]</a><span class="k">def</span> <span class="nf">ap_per_class</span><span class="p">(</span><span class="n">tp</span><span class="p">,</span> <span class="n">conf</span><span class="p">,</span> <span class="n">pred_cls</span><span class="p">,</span> <span class="n">target_cls</span><span class="p">):</span>
  95. <span class="sd">&quot;&quot;&quot; Compute the average precision, given the recall and precision curves.</span>
  96. <span class="sd"> Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.</span>
  97. <span class="sd"> # Arguments</span>
  98. <span class="sd"> tp: True positives (nparray, nx1 or nx10).</span>
  99. <span class="sd"> conf: Objectness value from 0-1 (nparray).</span>
  100. <span class="sd"> pred_cls: Predicted object classes (nparray).</span>
  101. <span class="sd"> target_cls: True object classes (nparray).</span>
  102. <span class="sd"> # Returns</span>
  103. <span class="sd"> The average precision as computed in py-faster-rcnn.</span>
  104. <span class="sd"> &quot;&quot;&quot;</span>
  105. <span class="c1"># SORT BY OBJECTNESS</span>
  106. <span class="n">i</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="o">-</span><span class="n">conf</span><span class="p">)</span>
  107. <span class="n">tp</span><span class="p">,</span> <span class="n">conf</span><span class="p">,</span> <span class="n">pred_cls</span> <span class="o">=</span> <span class="n">tp</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">conf</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">pred_cls</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
  108. <span class="c1"># FIND UNIQUE CLASSES</span>
  109. <span class="n">unique_classes</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">unique</span><span class="p">(</span><span class="n">target_cls</span><span class="p">)</span>
  110. <span class="c1"># CREATE PRECISION-RECALL CURVE AND COMPUTE AP FOR EACH CLASS</span>
  111. <span class="n">pr_score</span> <span class="o">=</span> <span class="mf">0.1</span> <span class="c1"># SCORE TO EVALUATE P AND R https://github.com/ultralytics/yolov3/issues/898</span>
  112. <span class="n">s</span> <span class="o">=</span> <span class="p">[</span><span class="n">unique_classes</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">tp</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]]</span> <span class="c1"># NUMBER CLASS, NUMBER IOU THRESHOLDS (I.E. 10 FOR MAP0.5...0.95)</span>
  113. <span class="n">ap</span><span class="p">,</span> <span class="n">p</span><span class="p">,</span> <span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">s</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">s</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">s</span><span class="p">)</span>
  114. <span class="k">for</span> <span class="n">ci</span><span class="p">,</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">unique_classes</span><span class="p">):</span>
  115. <span class="n">i</span> <span class="o">=</span> <span class="n">pred_cls</span> <span class="o">==</span> <span class="n">c</span>
  116. <span class="n">ground_truth_num</span> <span class="o">=</span> <span class="p">(</span><span class="n">target_cls</span> <span class="o">==</span> <span class="n">c</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span> <span class="c1"># NUMBER OF GROUND TRUTH OBJECTS</span>
  117. <span class="n">predictions_num</span> <span class="o">=</span> <span class="n">i</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span> <span class="c1"># NUMBER OF PREDICTED OBJECTS</span>
  118. <span class="k">if</span> <span class="n">predictions_num</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">ground_truth_num</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
  119. <span class="k">continue</span>
  120. <span class="k">else</span><span class="p">:</span>
  121. <span class="c1"># ACCUMULATE FPS AND TPS</span>
  122. <span class="n">fpc</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">tp</span><span class="p">[</span><span class="n">i</span><span class="p">])</span><span class="o">.</span><span class="n">cumsum</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
  123. <span class="n">tpc</span> <span class="o">=</span> <span class="n">tp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">cumsum</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
  124. <span class="c1"># RECALL</span>
  125. <span class="n">recall</span> <span class="o">=</span> <span class="n">tpc</span> <span class="o">/</span> <span class="p">(</span><span class="n">ground_truth_num</span> <span class="o">+</span> <span class="mf">1e-16</span><span class="p">)</span> <span class="c1"># RECALL CURVE</span>
  126. <span class="n">r</span><span class="p">[</span><span class="n">ci</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">interp</span><span class="p">(</span><span class="o">-</span><span class="n">pr_score</span><span class="p">,</span> <span class="o">-</span><span class="n">conf</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">recall</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> <span class="c1"># R AT PR_SCORE, NEGATIVE X, XP BECAUSE XP DECREASES</span>
  127. <span class="c1"># PRECISION</span>
  128. <span class="n">precision</span> <span class="o">=</span> <span class="n">tpc</span> <span class="o">/</span> <span class="p">(</span><span class="n">tpc</span> <span class="o">+</span> <span class="n">fpc</span><span class="p">)</span> <span class="c1"># precision curve</span>
  129. <span class="n">p</span><span class="p">[</span><span class="n">ci</span><span class="p">]</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">interp</span><span class="p">(</span><span class="o">-</span><span class="n">pr_score</span><span class="p">,</span> <span class="o">-</span><span class="n">conf</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">precision</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> <span class="c1"># P AT PR_SCORE</span>
  130. <span class="c1"># AP FROM RECALL-PRECISION CURVE</span>
  131. <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">tp</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]):</span>
  132. <span class="n">ap</span><span class="p">[</span><span class="n">ci</span><span class="p">,</span> <span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">compute_ap</span><span class="p">(</span><span class="n">recall</span><span class="p">[:,</span> <span class="n">j</span><span class="p">],</span> <span class="n">precision</span><span class="p">[:,</span> <span class="n">j</span><span class="p">])</span>
  133. <span class="c1"># COMPUTE F1 SCORE (HARMONIC MEAN OF PRECISION AND RECALL)</span>
  134. <span class="n">f1</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">p</span> <span class="o">*</span> <span class="n">r</span> <span class="o">/</span> <span class="p">(</span><span class="n">p</span> <span class="o">+</span> <span class="n">r</span> <span class="o">+</span> <span class="mf">1e-16</span><span class="p">)</span>
  135. <span class="k">return</span> <span class="n">p</span><span class="p">,</span> <span class="n">r</span><span class="p">,</span> <span class="n">ap</span><span class="p">,</span> <span class="n">f1</span><span class="p">,</span> <span class="n">unique_classes</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="s1">&#39;int32&#39;</span><span class="p">)</span></div>
  136. <div class="viewcode-block" id="DetectionMetrics"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.detection_metrics.DetectionMetrics">[docs]</a><span class="k">class</span> <span class="nc">DetectionMetrics</span><span class="p">(</span><span class="n">Metric</span><span class="p">):</span>
  137. <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num_cls</span><span class="p">,</span>
  138. <span class="n">post_prediction_callback</span><span class="p">:</span> <span class="n">DetectionPostPredictionCallback</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
  139. <span class="n">iou_thres</span><span class="p">:</span> <span class="n">IouThreshold</span> <span class="o">=</span> <span class="n">IouThreshold</span><span class="o">.</span><span class="n">MAP_05_TO_095</span><span class="p">,</span>
  140. <span class="n">dist_sync_on_step</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
  141. <span class="sd">&quot;&quot;&quot;</span>
  142. <span class="sd"> @param post_prediction_callback:</span>
  143. <span class="sd"> @param iou_thres:</span>
  144. <span class="sd"> @param dist_sync_on_step:</span>
  145. <span class="sd"> &quot;&quot;&quot;</span>
  146. <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">dist_sync_on_step</span><span class="o">=</span><span class="n">dist_sync_on_step</span><span class="p">)</span>
  147. <span class="bp">self</span><span class="o">.</span><span class="n">num_cls</span> <span class="o">=</span> <span class="n">num_cls</span>
  148. <span class="bp">self</span><span class="o">.</span><span class="n">iou_thres</span> <span class="o">=</span> <span class="n">iou_thres</span>
  149. <span class="bp">self</span><span class="o">.</span><span class="n">map_str</span> <span class="o">=</span> <span class="s1">&#39;mAP@</span><span class="si">%.1f</span><span class="s1">&#39;</span> <span class="o">%</span> <span class="n">iou_thres</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">iou_thres</span><span class="o">.</span><span class="n">is_range</span><span class="p">()</span> <span class="k">else</span> <span class="s1">&#39;mAP@</span><span class="si">%.2f</span><span class="s1">:</span><span class="si">%.2f</span><span class="s1">&#39;</span> <span class="o">%</span> <span class="n">iou_thres</span>
  150. <span class="bp">self</span><span class="o">.</span><span class="n">component_names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;Precision&quot;</span><span class="p">,</span> <span class="s2">&quot;Recall&quot;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">map_str</span><span class="p">,</span> <span class="s2">&quot;F1&quot;</span><span class="p">]</span>
  151. <span class="bp">self</span><span class="o">.</span><span class="n">components</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">component_names</span><span class="p">)</span>
  152. <span class="bp">self</span><span class="o">.</span><span class="n">post_prediction_callback</span> <span class="o">=</span> <span class="n">post_prediction_callback</span>
  153. <span class="bp">self</span><span class="o">.</span><span class="n">is_distributed</span> <span class="o">=</span> <span class="n">super_gradients</span><span class="o">.</span><span class="n">is_distributed</span><span class="p">()</span>
  154. <span class="bp">self</span><span class="o">.</span><span class="n">world_size</span> <span class="o">=</span> <span class="kc">None</span>
  155. <span class="bp">self</span><span class="o">.</span><span class="n">rank</span> <span class="o">=</span> <span class="kc">None</span>
  156. <span class="bp">self</span><span class="o">.</span><span class="n">add_state</span><span class="p">(</span><span class="s2">&quot;metrics&quot;</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="p">[],</span> <span class="n">dist_reduce_fx</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
  157. <div class="viewcode-block" id="DetectionMetrics.update"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.detection_metrics.DetectionMetrics.update">[docs]</a> <span class="k">def</span> <span class="nf">update</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">preds</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">device</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span>
  158. <span class="n">preds</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">post_prediction_callback</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">)</span>
  159. <span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">shape</span>
  160. <span class="n">metrics</span><span class="p">,</span> <span class="n">batch_images_counter</span> <span class="o">=</span> <span class="n">calc_batch_prediction_accuracy</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">,</span>
  161. <span class="bp">self</span><span class="o">.</span><span class="n">iou_thres</span><span class="p">)</span>
  162. <span class="n">acc_metrics</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;metrics&quot;</span><span class="p">)</span>
  163. <span class="nb">setattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;metrics&quot;</span><span class="p">,</span> <span class="n">acc_metrics</span> <span class="o">+</span> <span class="n">metrics</span><span class="p">)</span></div>
  164. <div class="viewcode-block" id="DetectionMetrics.compute"><a class="viewcode-back" href="../../../../super_gradients.training.metrics.html#super_gradients.training.metrics.detection_metrics.DetectionMetrics.compute">[docs]</a> <span class="k">def</span> <span class="nf">compute</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
  165. <span class="n">precision</span><span class="p">,</span> <span class="n">recall</span><span class="p">,</span> <span class="n">f1</span><span class="p">,</span> <span class="n">mean_precision</span><span class="p">,</span> <span class="n">mean_recall</span><span class="p">,</span> <span class="n">mean_ap</span><span class="p">,</span> <span class="n">mf1</span> <span class="o">=</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span>
  166. <span class="n">metrics</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;metrics&quot;</span><span class="p">)</span>
  167. <span class="n">metrics</span> <span class="o">=</span> <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">concatenate</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="nb">zip</span><span class="p">(</span><span class="o">*</span><span class="n">metrics</span><span class="p">))]</span>
  168. <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">metrics</span><span class="p">):</span>
  169. <span class="n">precision</span><span class="p">,</span> <span class="n">recall</span><span class="p">,</span> <span class="n">average_precision</span><span class="p">,</span> <span class="n">f1</span><span class="p">,</span> <span class="n">ap_class</span> <span class="o">=</span> <span class="n">ap_per_class</span><span class="p">(</span><span class="o">*</span><span class="n">metrics</span><span class="p">)</span>
  170. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">iou_thres</span><span class="o">.</span><span class="n">is_range</span><span class="p">():</span>
  171. <span class="n">precision</span><span class="p">,</span> <span class="n">recall</span><span class="p">,</span> <span class="n">average_precision</span><span class="p">,</span> <span class="n">f1</span> <span class="o">=</span> <span class="n">precision</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">recall</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">average_precision</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span>
  172. <span class="mi">1</span><span class="p">),</span> <span class="n">average_precision</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span>
  173. <span class="n">mean_precision</span><span class="p">,</span> <span class="n">mean_recall</span><span class="p">,</span> <span class="n">mean_ap</span><span class="p">,</span> <span class="n">mf1</span> <span class="o">=</span> <span class="n">precision</span><span class="o">.</span><span class="n">mean</span><span class="p">(),</span> <span class="n">recall</span><span class="o">.</span><span class="n">mean</span><span class="p">(),</span> <span class="n">average_precision</span><span class="o">.</span><span class="n">mean</span><span class="p">(),</span> <span class="n">f1</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
  174. <span class="k">return</span> <span class="p">{</span><span class="s2">&quot;Precision&quot;</span><span class="p">:</span> <span class="n">mean_precision</span><span class="p">,</span> <span class="s2">&quot;Recall&quot;</span><span class="p">:</span> <span class="n">mean_recall</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">map_str</span><span class="p">:</span> <span class="n">mean_ap</span><span class="p">,</span> <span class="s2">&quot;F1&quot;</span><span class="p">:</span> <span class="n">mf1</span><span class="p">}</span></div>
  175. <span class="k">def</span> <span class="nf">_sync_dist</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dist_sync_fn</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">process_group</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
  176. <span class="sd">&quot;&quot;&quot;</span>
  177. <span class="sd"> When in distributed mode, stats are aggregated after each forward pass to the metric state. Since these have all</span>
  178. <span class="sd"> different sizes we override the synchronization function since it works only for tensors (and use</span>
  179. <span class="sd"> all_gather_object)</span>
  180. <span class="sd"> @param dist_sync_fn:</span>
  181. <span class="sd"> @return:</span>
  182. <span class="sd"> &quot;&quot;&quot;</span>
  183. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">world_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
  184. <span class="bp">self</span><span class="o">.</span><span class="n">world_size</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">get_world_size</span><span class="p">()</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_distributed</span> <span class="k">else</span> <span class="o">-</span><span class="mi">1</span>
  185. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">rank</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
  186. <span class="bp">self</span><span class="o">.</span><span class="n">rank</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">get_rank</span><span class="p">()</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_distributed</span> <span class="k">else</span> <span class="o">-</span><span class="mi">1</span>
  187. <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_distributed</span><span class="p">:</span>
  188. <span class="n">local_state_dict</span> <span class="o">=</span> <span class="p">{</span><span class="n">attr</span><span class="p">:</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">attr</span><span class="p">)</span> <span class="k">for</span> <span class="n">attr</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_reductions</span><span class="o">.</span><span class="n">keys</span><span class="p">()}</span>
  189. <span class="n">gathered_state_dicts</span> <span class="o">=</span> <span class="p">[</span><span class="kc">None</span><span class="p">]</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">world_size</span>
  190. <span class="n">torch</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">barrier</span><span class="p">()</span>
  191. <span class="n">torch</span><span class="o">.</span><span class="n">distributed</span><span class="o">.</span><span class="n">all_gather_object</span><span class="p">(</span><span class="n">gathered_state_dicts</span><span class="p">,</span> <span class="n">local_state_dict</span><span class="p">)</span>
  192. <span class="n">metrics</span> <span class="o">=</span> <span class="p">[]</span>
  193. <span class="k">for</span> <span class="n">state_dict</span> <span class="ow">in</span> <span class="n">gathered_state_dicts</span><span class="p">:</span>
  194. <span class="n">metrics</span> <span class="o">+=</span> <span class="n">state_dict</span><span class="p">[</span><span class="s2">&quot;metrics&quot;</span><span class="p">]</span>
  195. <span class="nb">setattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;metrics&quot;</span><span class="p">,</span> <span class="n">metrics</span><span class="p">)</span></div>
  196. </pre></div>
  197. </div>
  198. </div>
  199. <footer>
  200. <hr/>
  201. <div role="contentinfo">
  202. <p>&#169; Copyright 2021, SuperGradients team.</p>
  203. </div>
  204. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  205. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  206. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  207. </footer>
  208. </div>
  209. </div>
  210. </section>
  211. </div>
  212. <script>
  213. jQuery(function () {
  214. SphinxRtdTheme.Navigation.enable(true);
  215. });
  216. </script>
  217. </body>
  218. </html>
Discard
Tip!

Press p or to see the previous file or, n or to see the next file