1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.losses.yolo_v3_loss — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">SuperGradients</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.losses.yolo_v3_loss</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.losses.yolo_v3_loss</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">torch</span>
- <span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
- <span class="kn">from</span> <span class="nn">torch.nn.modules.loss</span> <span class="kn">import</span> <span class="n">_Loss</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.detection_utils</span> <span class="kn">import</span> <span class="n">build_detection_targets</span><span class="p">,</span> <span class="n">calculate_bbox_iou_elementwise</span>
- <div class="viewcode-block" id="YoLoV3DetectionLoss"><a class="viewcode-back" href="../../../../super_gradients.training.losses.html#super_gradients.training.losses.yolo_v3_loss.YoLoV3DetectionLoss">[docs]</a><span class="k">class</span> <span class="nc">YoLoV3DetectionLoss</span><span class="p">(</span><span class="n">_Loss</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> YoLoV3DetectionLoss - Loss Class for Object Detection</span>
- <span class="sd"> """</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">,</span> <span class="n">cls_pw</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.</span><span class="p">,</span> <span class="n">obj_pw</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.</span><span class="p">,</span> <span class="n">giou</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">3.54</span><span class="p">,</span> <span class="n">obj</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">64.3</span><span class="p">,</span>
- <span class="bp">cls</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">37.4</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">YoLoV3DetectionLoss</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">model</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cls_pw</span> <span class="o">=</span> <span class="n">cls_pw</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">obj_pw</span> <span class="o">=</span> <span class="n">obj_pw</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">giou</span> <span class="o">=</span> <span class="n">giou</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">obj</span> <span class="o">=</span> <span class="n">obj</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">cls</span> <span class="o">=</span> <span class="bp">cls</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">classes_num</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">net</span><span class="o">.</span><span class="n">module</span><span class="o">.</span><span class="n">num_classes</span>
- <div class="viewcode-block" id="YoLoV3DetectionLoss.forward"><a class="viewcode-back" href="../../../../super_gradients.training.losses.html#super_gradients.training.losses.yolo_v3_loss.YoLoV3DetectionLoss.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model_output</span><span class="p">,</span> <span class="n">targets</span><span class="p">):</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">model_output</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">model_output</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
- <span class="c1"># in test/eval mode the Yolo v3 model output a tuple where the second item is the raw predictions</span>
- <span class="n">_</span><span class="p">,</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">model_output</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">predictions</span> <span class="o">=</span> <span class="n">model_output</span>
- <span class="n">detection_targets</span> <span class="o">=</span> <span class="n">build_detection_targets</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">net</span><span class="o">.</span><span class="n">module</span><span class="p">,</span> <span class="n">targets</span><span class="p">)</span>
- <span class="n">float_tensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">FloatTensor</span> <span class="k">if</span> <span class="n">predictions</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">is_cuda</span> <span class="k">else</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span>
- <span class="n">class_loss</span><span class="p">,</span> <span class="n">giou_loss</span><span class="p">,</span> <span class="n">objectness_loss</span> <span class="o">=</span> <span class="n">float_tensor</span><span class="p">([</span><span class="mi">0</span><span class="p">]),</span> <span class="n">float_tensor</span><span class="p">([</span><span class="mi">0</span><span class="p">]),</span> <span class="n">float_tensor</span><span class="p">([</span><span class="mi">0</span><span class="p">])</span>
- <span class="n">target_class</span><span class="p">,</span> <span class="n">target_box</span><span class="p">,</span> <span class="n">indices</span><span class="p">,</span> <span class="n">anchor_vec</span> <span class="o">=</span> <span class="n">detection_targets</span>
- <span class="n">reduction</span> <span class="o">=</span> <span class="s1">'mean'</span> <span class="c1"># Loss reduction (sum or mean)</span>
- <span class="c1"># DEFINE CRITERIA</span>
- <span class="n">BCEcls</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">(</span><span class="n">pos_weight</span><span class="o">=</span><span class="n">float_tensor</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">cls_pw</span><span class="p">]),</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">)</span>
- <span class="n">BCEobj</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BCEWithLogitsLoss</span><span class="p">(</span><span class="n">pos_weight</span><span class="o">=</span><span class="n">float_tensor</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">obj_pw</span><span class="p">]),</span> <span class="n">reduction</span><span class="o">=</span><span class="n">reduction</span><span class="p">)</span>
- <span class="c1"># COMPUTE THE LOSSES BASED ON EACH ONE OF THE YOLO LAYERS PREDICTIONS</span>
- <span class="n">grid_points_num</span><span class="p">,</span> <span class="n">targets_num</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span>
- <span class="k">for</span> <span class="n">yolo_layer_index</span><span class="p">,</span> <span class="n">yolo_layer_prediction</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">predictions</span><span class="p">):</span>
- <span class="n">image</span><span class="p">,</span> <span class="n">anchor</span><span class="p">,</span> <span class="n">grid_y</span><span class="p">,</span> <span class="n">grid_x</span> <span class="o">=</span> <span class="n">indices</span><span class="p">[</span><span class="n">yolo_layer_index</span><span class="p">]</span>
- <span class="n">target_object</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">yolo_layer_prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
- <span class="n">grid_points_num</span> <span class="o">+=</span> <span class="n">target_object</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span>
- <span class="c1"># COMPUTE LOSSES</span>
- <span class="n">nb</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">image</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">nb</span><span class="p">:</span> <span class="c1"># number of targets</span>
- <span class="n">targets_num</span> <span class="o">+=</span> <span class="n">nb</span>
- <span class="n">predictions_for_targets</span> <span class="o">=</span> <span class="n">yolo_layer_prediction</span><span class="p">[</span><span class="n">image</span><span class="p">,</span> <span class="n">anchor</span><span class="p">,</span> <span class="n">grid_y</span><span class="p">,</span> <span class="n">grid_x</span><span class="p">]</span>
- <span class="n">target_object</span><span class="p">[</span><span class="n">image</span><span class="p">,</span> <span class="n">anchor</span><span class="p">,</span> <span class="n">grid_y</span><span class="p">,</span> <span class="n">grid_x</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1.0</span>
- <span class="c1"># GIoU LOSS CALCULATION</span>
- <span class="n">pxy</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span>
- <span class="n">predictions_for_targets</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">:</span><span class="mi">2</span><span class="p">])</span> <span class="c1"># pxy = pxy * s - (s - 1) / 2, s = 1.5 (scale_xy)</span>
- <span class="n">bbox_prediction</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">(</span>
- <span class="p">(</span><span class="n">pxy</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">predictions_for_targets</span><span class="p">[:,</span> <span class="mi">2</span><span class="p">:</span><span class="mi">4</span><span class="p">])</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="nb">max</span><span class="o">=</span><span class="mf">1E3</span><span class="p">)</span> <span class="o">*</span> <span class="n">anchor_vec</span><span class="p">[</span><span class="n">yolo_layer_index</span><span class="p">]),</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">giou</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="n">calculate_bbox_iou_elementwise</span><span class="p">(</span><span class="n">bbox_prediction</span><span class="o">.</span><span class="n">t</span><span class="p">(),</span> <span class="n">target_box</span><span class="p">[</span><span class="n">yolo_layer_index</span><span class="p">],</span>
- <span class="n">x1y1x2y2</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">GIoU</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
- <span class="n">giou_loss</span> <span class="o">+=</span> <span class="n">giou</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span> <span class="k">if</span> <span class="n">reduction</span> <span class="o">==</span> <span class="s1">'sum'</span> <span class="k">else</span> <span class="n">giou</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
- <span class="c1"># ONLY RELEVANT TO MULTIPLE CLASSES</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">classes_num</span> <span class="o">></span> <span class="mi">1</span><span class="p">:</span>
- <span class="n">class_targets</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">predictions_for_targets</span><span class="p">[:,</span> <span class="mi">5</span><span class="p">:])</span>
- <span class="n">class_targets</span><span class="p">[</span><span class="nb">range</span><span class="p">(</span><span class="n">nb</span><span class="p">),</span> <span class="n">target_class</span><span class="p">[</span><span class="n">yolo_layer_index</span><span class="p">]]</span> <span class="o">=</span> <span class="mf">1.0</span>
- <span class="n">class_loss</span> <span class="o">+=</span> <span class="n">BCEcls</span><span class="p">(</span><span class="n">predictions_for_targets</span><span class="p">[:,</span> <span class="mi">5</span><span class="p">:],</span> <span class="n">class_targets</span><span class="p">)</span>
- <span class="n">objectness_loss</span> <span class="o">+=</span> <span class="n">BCEobj</span><span class="p">(</span><span class="n">yolo_layer_prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="n">target_object</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">reduction</span> <span class="o">==</span> <span class="s1">'sum'</span><span class="p">:</span>
- <span class="n">giou_loss</span> <span class="o">*=</span> <span class="mi">3</span> <span class="o">/</span> <span class="n">targets_num</span>
- <span class="n">objectness_loss</span> <span class="o">*=</span> <span class="mi">3</span> <span class="o">/</span> <span class="n">grid_points_num</span>
- <span class="n">class_loss</span> <span class="o">*=</span> <span class="mi">3</span> <span class="o">/</span> <span class="n">targets_num</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">classes_num</span>
- <span class="n">loss</span> <span class="o">=</span> <span class="n">giou_loss</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">giou</span> <span class="o">+</span> <span class="n">objectness_loss</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">obj</span> <span class="o">+</span> <span class="n">class_loss</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">cls</span>
- <span class="k">return</span> <span class="n">loss</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">giou_loss</span><span class="p">,</span> <span class="n">objectness_loss</span><span class="p">,</span> <span class="n">class_loss</span><span class="p">,</span> <span class="n">loss</span><span class="p">))</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span></div></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|