|
@@ -60,7 +60,8 @@ All SuperGradients models’ are production ready in the sense that they are com
|
|
|
|
|
|
|
|
|
## What's New
|
|
|
-* 【07/07/2022】SSD Lite MobileNetV2 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-object-detection-pytorch-checkpoints) on COCO - Tailored for edge devices! 📱
|
|
|
+* 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
|
|
|
+* 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-object-detection-pytorch-checkpoints) on COCO - Tailored for edge devices! 📱
|
|
|
* 【07/07/2022】 STDC - new pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-semantic-segmentation-pytorch-checkpoints) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores 🎯
|
|
|
* 【16/06/2022】 ResNet50 - new pre-trained checkpoint and [recipe](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/imagenet_resnet50_kd.yaml) for ImageNet top-1 score of 81.9 💪
|
|
|
* 【09/06/2022】 ViT models (Vision Transformer) - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) and pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-object-detection-pytorch-checkpoints) (ViT, BEiT).
|
|
@@ -74,7 +75,6 @@ All SuperGradients models’ are production ready in the sense that they are com
|
|
|
Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
|
|
|
|
|
|
## Coming soon
|
|
|
-- [ ] YOLOX models (object detection) - recipes and pre-trained checkpoints.
|
|
|
- [ ] Single class detectors (recipes, pre-trained checkpoints) for edge devices deployment.
|
|
|
- [ ] Single class segmentation (recipes, pre-trained checkpoints) for edge devices deployment.
|
|
|
- [ ] QAT capabilities (Quantization Aware Training).
|
|
@@ -89,10 +89,10 @@ ________________________________________________________________________________
|
|
|
|
|
|
- [Getting Started](#getting-started)
|
|
|
- [Quick Start Notebook - Classification example](#quick-start-notebook---classification)
|
|
|
- - [Quick Start Notebook - Object detection example](#quick-start-notebook---object-detection)
|
|
|
- [Quick Start Notebook - Semantic segmentation example](#quick-start-notebook---semantic-segmentation)
|
|
|
- - [Walkthrough Notebook](#supergradients-complete-walkthrough-notebook)
|
|
|
- <!-- - [Quick Start Notebook - Upload to Deci Platform example](#quick-start-notebook---upload-your-model-to-deci-platform) -->
|
|
|
+<!-- - [Quick Start Notebook - Object detection example](#quick-start-notebook---object-detection)
|
|
|
+- [Walkthrough Notebook](#supergradients-complete-walkthrough-notebook)
|
|
|
+ - [Quick Start Notebook - Upload to Deci Platform example](#quick-start-notebook---upload-your-model-to-deci-platform) -->
|
|
|
- [Transfer Learning](#transfer-learning)
|
|
|
- [Transfer Learning with SG Notebook - Object detection example](#transfer-learning-with-sg-notebook---object-detection)
|
|
|
- [Transfer Learning with SG Notebook - Semantic segmentation example](#transfer-learning-with-sg-notebook---semantic-segmentation)
|
|
@@ -127,13 +127,13 @@ Want to try our pre-trained models on your machine? Import SuperGradients, initi
|
|
|
|
|
|
```python
|
|
|
# The pretrained_weights argument will load a pre-trained architecture on the provided dataset
|
|
|
-# This is an example of loading COCO-2017 pre-trained weights for a YOLOv5 Nano object detection model
|
|
|
+# This is an example of loading COCO-2017 pre-trained weights for a YOLOX Nano object detection model
|
|
|
|
|
|
import super_gradients
|
|
|
from super_gradients.training import SgModel
|
|
|
|
|
|
-trainer = SgModel(experiment_name="yolov5n_coco_experiment",ckpt_root_dir=<CHECKPOINT_DIRECTORY>)
|
|
|
-trainer.build_model(architecture="yolo_v5n", arch_params={"pretrained_weights": "coco", num_classes": 80})
|
|
|
+trainer = SgModel(experiment_name="yoloxn_coco_experiment",ckpt_root_dir=<CHECKPOINT_DIRECTORY>)
|
|
|
+trainer.build_model(architecture="yolox_n", arch_params={"pretrained_weights": "coco", num_classes": 80})
|
|
|
```
|
|
|
|
|
|
### Quick Start Notebook - Classification
|
|
@@ -153,16 +153,17 @@ Get started with our quick start notebook for image classification tasks on Goog
|
|
|
</table>
|
|
|
</br></br>
|
|
|
|
|
|
-### Quick Start Notebook - Object Detection
|
|
|
|
|
|
-Get started with our quick start notebook for object detection tasks on Google Colab for a quick and easy start using free GPU hardware.
|
|
|
+### Quick Start Notebook - Semantic Segmentation
|
|
|
+
|
|
|
+Get started with our quick start notebook for semantic segmentation tasks on Google Colab for a quick and easy start using free GPU hardware.
|
|
|
|
|
|
<table class="tfo-notebook-buttons" align="left">
|
|
|
<td>
|
|
|
- <a target="_blank" href="https://bit.ly/3wqMsEM"><img src="./docs/assets/SG_img/colab_logo.png" />Detection Quick Start in Google Colab</a>
|
|
|
+ <a target="_blank" href="https://bit.ly/3Jp7w1U"><img src="./docs/assets/SG_img/colab_logo.png" />Segmentation Quick Start in Google Colab</a>
|
|
|
</td>
|
|
|
<td>
|
|
|
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_detection.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
|
|
|
+ <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_segmentation.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
|
|
|
</td>
|
|
|
<td>
|
|
|
<a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
|
|
@@ -170,24 +171,24 @@ Get started with our quick start notebook for object detection tasks on Google C
|
|
|
</table>
|
|
|
</br></br>
|
|
|
|
|
|
-### Quick Start Notebook - Semantic Segmentation
|
|
|
+<!--
|
|
|
+### Quick Start Notebook - Object Detection
|
|
|
|
|
|
-Get started with our quick start notebook for semantic segmentation tasks on Google Colab for a quick and easy start using free GPU hardware.
|
|
|
+Get started with our quick start notebook for object detection tasks on Google Colab for a quick and easy start using free GPU hardware.
|
|
|
|
|
|
<table class="tfo-notebook-buttons" align="left">
|
|
|
<td>
|
|
|
- <a target="_blank" href="https://bit.ly/3Jp7w1U"><img src="./docs/assets/SG_img/colab_logo.png" />Segmentation Quick Start in Google Colab</a>
|
|
|
+ <a target="_blank" href="https://bit.ly/3wqMsEM"><img src="./docs/assets/SG_img/colab_logo.png" />Detection Quick Start in Google Colab</a>
|
|
|
</td>
|
|
|
<td>
|
|
|
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_segmentation.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
|
|
|
+ <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_detection.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
|
|
|
</td>
|
|
|
<td>
|
|
|
<a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
|
|
|
</td>
|
|
|
</table>
|
|
|
</br></br>
|
|
|
-
|
|
|
-<!--
|
|
|
+
|
|
|
### Quick Start Notebook - Upload your model to Deci Platform
|
|
|
|
|
|
Get Started with an example of how to upload your trained model to Deci Platform for runtime optimization and compilation to your target deployment HW.
|
|
@@ -216,7 +217,7 @@ Get Started with an example of how to upload your trained model to Deci Platform
|
|
|
</tbody>
|
|
|
</table>
|
|
|
</br></br>
|
|
|
--->
|
|
|
+
|
|
|
### SuperGradients Complete Walkthrough Notebook
|
|
|
|
|
|
Learn more about SuperGradients training components with our walkthrough notebook on Google Colab for an easy to use tutorial using free GPU hardware
|
|
@@ -233,12 +234,12 @@ Learn more about SuperGradients training components with our walkthrough noteboo
|
|
|
</td>
|
|
|
</table>
|
|
|
</br></br>
|
|
|
-
|
|
|
+ -->
|
|
|
|
|
|
## Transfer Learning
|
|
|
### Transfer Learning with SG Notebook - Object Detection
|
|
|
|
|
|
-Learn more about SuperGradients transfer learning or fine tuning abilities with our COCO pre-trained YoloV5nano fine tuning into a sub-dataset of PASCAL VOC example notebook on Google Colab for an easy to use tutorial using free GPU hardware
|
|
|
+Learn more about SuperGradients transfer learning or fine tuning abilities with our COCO pre-trained YoloX nano fine tuning into a sub-dataset of PASCAL VOC example notebook on Google Colab for an easy to use tutorial using free GPU hardware
|
|
|
|
|
|
<table class="tfo-notebook-buttons" align="left">
|
|
|
<td>
|
|
@@ -374,10 +375,11 @@ pip install git+https://github.com/Deci-AI/super-gradients.git@stable
|
|
|
|------------- |------ | ---------- |------ | -------- |------ | ---------- |------ | :------: |
|
|
|
| SSD lite MobileNet v2 | COCO |320x320 |21.5 |**0.77ms** |**1.40ms**|**5.28ms** |**6.44ms** |**4.13ms**|
|
|
|
| SSD lite MobileNet v1 | COCO |320x320 |24.3 |**1.55ms** |**2.84ms**|**8.07ms** |**9.14ms** |**22.76ms**|
|
|
|
-| YOLOv5 nano | COCO |640x640 |27.7 |**1.48ms** |**5.43ms**|**9.28ms** |**17.44ms** |**21.71ms**|
|
|
|
-| YOLOv5 small | COCO |640x640 |37.3 |**2.29ms** |**6.14ms**|**14.31ms** |**22.50ms** |**34.10ms**|
|
|
|
-| YOLOv5 medium| COCO |640x640 |45.2 |**4.60ms** |**8.10ms**|**26.76ms** |**34.95ms** |**65.86ms**|
|
|
|
-| YOLOv5 large | COCO |640x640 |48.0 |**7.20ms** |**10.28ms**|**43.89ms** |**51.92ms** |**122.97ms**|
|
|
|
+| YOLOX nano | COCO |640x640 |26.77|**2.47ms** |**4.09ms**|**-ms** |**12.97ms** |**-**|
|
|
|
+| YOLOX tiny | COCO |640x640 |37.18|**3.16ms** |**4.61ms**|**-ms** |**16.83ms** |**-**|
|
|
|
+| YOLOX small | COCO |640x640 |40.47 |**3.58ms** |**4.94ms**|**-ms** |**21.08ms** |**-**|
|
|
|
+| YOLOX medium| COCO |640x640 |46.4 |**6.40ms** |**7.65ms**|**-ms** |**44.5ms** |**-**|
|
|
|
+| YOLOX large | COCO |640x640 |49.25 |**10.07ms** |**11.12ms**|**-ms** |**77.01ms** |**-**|
|
|
|
|
|
|
|
|
|
> **NOTE:** <br/>
|
|
@@ -434,8 +436,7 @@ Devices[https://arxiv.org/pdf/1807.11164](https://arxiv.org/pdf/1807.11164)
|
|
|
- [CSP DarkNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/csp_darknet53.py)
|
|
|
- [DarkNet-53](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/darknet53.py)
|
|
|
- [SSD (Single Shot Detector)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/ssd.py) - [https://arxiv.org/pdf/1512.02325](https://arxiv.org/pdf/1512.02325)
|
|
|
-- [YOLO v3](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolov3.py) - [https://arxiv.org/pdf/1804.02767](https://arxiv.org/pdf/1804.02767)
|
|
|
-- [YOLO v5](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolov5.py) - [by Ultralytics](https://docs.ultralytics.com/)
|
|
|
+- [YOLOX](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolox.py) - [https://arxiv.org/abs/2107.08430](https://arxiv.org/abs/2107.08430)
|
|
|
|
|
|
|
|
|
### Semantic Segmentation
|