1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
- import unittest
- import os
- from super_gradients.training import SgModel
- from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ClassificationTestDatasetInterface
- from super_gradients.training.metrics import Accuracy, Top5
- class SaveCkptListUnitTest(unittest.TestCase):
- def setUp(self):
- # Define Parameters
- train_params = {"max_epochs": 4, "lr_decay_factor": 0.1, "lr_updates": [4], "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "save_ckpt_epoch_list": [1, 3],
- "loss": "cross_entropy", "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- # Define Model
- model = SgModel("save_ckpt_test", model_checkpoints_location='local')
- # Connect Dataset
- dataset = ClassificationTestDatasetInterface()
- model.connect_dataset_interface(dataset, data_loader_num_workers=8)
- # Build Model
- model.build_model("resnet18_cifar")
- # Train Model (and save ckpt_epoch_list)
- model.train(training_params=train_params)
- dir_path = model.checkpoints_dir_path
- self.file_names_list = [dir_path + f'/ckpt_epoch_{epoch}.pth' for epoch in train_params["save_ckpt_epoch_list"]]
- def test_save_ckpt_epoch_list(self):
- self.assertTrue(os.path.exists(self.file_names_list[0]))
- self.assertTrue(os.path.exists(self.file_names_list[1]))
- if __name__ == '__main__':
- unittest.main()
|