1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
- from super_gradients import ClassificationTestDatasetInterface
- from super_gradients.training import MultiGPUMode
- from super_gradients.training import SgModel
- from super_gradients.training.metrics import Accuracy, Top5
- import unittest
- def do_nothing():
- pass
- class CallWrapper:
- def __init__(self, f, check_before=do_nothing):
- self.f = f
- self.check_before = check_before
- def __call__(self, *args, **kwargs):
- self.check_before()
- return self.f(*args, **kwargs)
- class EMAIntegrationTest(unittest.TestCase):
- def _init_model(self) -> None:
- self.model = SgModel("resnet18_cifar_ema_test", model_checkpoints_location='local',
- device='cpu', multi_gpu=MultiGPUMode.OFF)
- dataset_interface = ClassificationTestDatasetInterface({"batch_size": 32})
- self.model.connect_dataset_interface(dataset_interface, 8)
- self.model.build_model("resnet18_cifar")
- @classmethod
- def tearDownClass(cls) -> None:
- pass
- def test_train(self):
- self._init_model()
- self._train({})
- self._init_model()
- self._train({"exp_activation": False})
- def _train(self, ema_params):
- training_params = {"max_epochs": 4,
- "lr_updates": [4],
- "lr_mode": "step",
- "lr_decay_factor": 0.1,
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "ema": True,
- "ema_params": ema_params,
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True}
- def before_test():
- self.assertEqual(self.model.net, self.model.ema_model.ema)
- def before_train_epoch():
- self.assertNotEqual(self.model.net, self.model.ema_model.ema)
- self.model.test = CallWrapper(self.model.test, check_before=before_test)
- self.model._train_epoch = CallWrapper(self.model._train_epoch, check_before=before_train_epoch)
- self.model.train(training_params=training_params)
- self.assertIsNotNone(self.model.ema_model)
- if __name__ == '__main__':
- unittest.main()
|