Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#274 Remove all elasticsearch references

Merged
Ofri Masad merged 1 commits into Deci-AI:master from deci-ai:feature/LAB-0000_remove_elasticsearch_references
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
  1. # ViT Imagenet1K fine tuning from Imagenet21K classification training:
  2. # This example trains with batch_size = 64 * 8 GPUs, total 512.
  3. # Training time on 8 x GeForce RTX A5000 is 15min / epoch.
  4. # ViT base : 84.15
  5. #
  6. # Log and tensorboard at s3://deci-pretrained-models/vit_base_imagenet1k/
  7. # Instructions:
  8. # running from the command line, set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
  9. # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/
  10. # Then:
  11. # for vit_base:
  12. # python -m torch.distributed.launch --nproc_per_node=8 train_from_recipe_example/train_from_recipe.py --config-name=imagenet_vit_base
  13. defaults:
  14. - training_hyperparams: imagenet_vit_train_params
  15. - dataset_params: imagenet_dataset_params
  16. - arch_params: vit_base_arch_params
  17. - checkpoint_params: vit_base_imagenet_checkpoint_params
  18. dataset_params:
  19. resize_size: 249
  20. batch_size: 64
  21. random_erase_prob: 0
  22. random_erase_value: random
  23. train_interpolation: random
  24. rand_augment_config_string: rand-m7-mstd0.5
  25. cutmix: True
  26. cutmix_params:
  27. mixup_alpha: 0.2
  28. cutmix_alpha: 1.0
  29. label_smoothing: 0.1
  30. img_mean: [0.5, 0.5, 0.5]
  31. img_std: [0.5, 0.5, 0.5]
  32. dataset_interface:
  33. imagenet:
  34. dataset_params: ${dataset_params}
  35. data_loader_num_workers: 8
  36. model_checkpoints_location: local
  37. load_checkpoint: True
  38. load_weights_only: True
  39. experiment_name: vit_base_imagenet1k
  40. sg_model:
  41. _target_: super_gradients.SgModel
  42. experiment_name: ${experiment_name}
  43. model_checkpoints_location: ${model_checkpoints_location}
  44. multi_gpu: AUTO
  45. architecture: vit_base
Discard
Tip!

Press p or to see the previous file or, n or to see the next file